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Abstract

Background: Dental ankylosis is an eruptive abnormality that requires early diagnosis to
prevent complications. This study investigated the usability and performance of various
deep learning models (including transfer learning, which enhances model performance
by utilizing pre-trained networks) for ankylosis detection in dental X-rays. Methods:
Classical convolutional neural network (CNN) method, Visual Geometry Group 16-
layer (VGG16), Inception V3, and MobileNet V2 deep learning models were used
for classification. In total, 268 panoramic radiograph images were diagnosed: 98 as
ankylosis cases and 170 as controls, with ages ranging from 4 to 15 years. Various data
augmentation techniques were employed. Accuracy, sensitivity, specificity, Area Under
Curve (AUC) and F1-Score metrics were assessed to evaluate the performance of the
models. Results: The CNN network without pretraining proved insufficient, leading to
the adoption of transfer learning. The accuracy, AUC, sensitivity, specificity and F1-
Score values of all three models can be used, but the VGG 16 and Inception V3 models
generally outperformed the MobileNetV2. Based on accuracy and specificity, Inception
V3 demonstrated better classification performance, while VGG16 demonstrated a
more balanced performance. Conclusions: This study highlights the effectiveness of
deep learning models, particularly VGG16, in identifying ankylosis from panoramic
radiographs, emphasizing the importance of model selection for improved diagnostic
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outcomes.
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1. Introduction

Dental ankylosis is an eruptive abnormality, histologically
characterized as a fusion between dentin or cementum and
bone resulting in the obliteration of the periodontal ligament
space [1]. The fusion of bone and the tooth root leads to a
vertical halt in tooth eruption, resulting in infraocclusion or
possibly impaction of the affected tooth. This condition may
occur during tooth eruption at any stage, whether before full
emergence or after arrival at the occlusal plane [, 2]. A
significant incidence of dental ankylosis has been documented
among children aged seven to eleven, with rates ranging from
1.3% to 38.5% [3, 4].

Two major theories explain dental ankylosis’ etiology: the
first emphasizes local factors, while the second focuses on
genetic factors, although no genes have yet been identified
[5]. Abnormal activation of the periodontium in mice, which
is known to increase Wnt signaling, may influence cancer
stem cell behavior. A correlation has also been proposed
between high levels of cellular cementum and alveolar bone
accumulation and ankylosed teeth development [6].

The early detection of dental ankylosis is based on clin-
ical (the presence of infraocclusion of the respective tooth,
percussion testing, and loss of tooth mobility) and preclinical
findings. Because ankylosis of primary molars is associated
with severe clinical outcomes, such as infraocclusion of tooth,
tipping of neighbouring teeth into infraocclusion space, which
may cause arch space loss, exfoliation and eruption impair-
ments for permanent successors and an asymmetric dental
pattern [1, 7].

The ankylosed tooth is unable to exert the post-eruptive
motion, thus it could be located in infraocclusion from 1 mm
to complete retention beneath the gingival tissue [1, 8]. In
severe ankylosis cases, percussion testing and assessment of
tooth mobility are not applicable [7]. Therefore, radiographic
assessment is crucial for diagnosing ankylosis. Bone and root
surfaces will be visible on X-ray images, as well as the absence
of periodontal space [1, 7].

Panoramic radiography is a vital imaging tool in dental
practice for diagnosing and planning treatment for dental and
maxillofacial conditions. A wide range of advantages are
associated with this procedure, including its simplicity, afford-
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ability, minimal radiation exposure, reduced patient discom-
fort, and also the capacity to display a comprehensive bilateral
view of oral structures [9, 10]. Further, interpreting dental
radiographs in children can be more challenging and time-
consuming. The mixed dentition, low-density areas in dental
follicles, and possible pathological periapical inflammation
may all be contributing factors [11-13].

Thus, disease identification can be transformed into a stan-
dardized image categorization task through artificial intelli-
gence (Al), leveraging machine algorithms endowed with rea-
soning capabilities and cognitive functions, particularly rely-
ing on deep learning [10, 11]. The medical field is rapidly
utilizing such technology. Particularly, image analysis us-
ing convolutional neural networks (CNNs) has demonstrated
the potential to enhance practitioners’ reliability and CNNs
learn from the statistical patterns present in imagery by iter-
atively processing pairs of images and corresponding image
labels, typically supplied by medical professionals. Eventu-
ally, CNNs become capable of evaluating unseen data [14].

Artificial intelligence has the potential to reduce dentists’
clinical workload and enhance diagnostic accuracy, enabling
earlier detection and more effective treatment alternatives,
while mitigating errors stemming from fatigue and facilitating
timely intervention, thereby conserving time [9, 11]. Deep
learning-driven artificial intelligence algorithms have largely
replaced specific conventional machine learning tasks in com-
puter vision, such as classification, segmentation, and detec-
tion [10, 11, 15]. Al has been used in dentistry for a variety
of purposes and across a wide range of modalities [10, 16—
19]. This includes detecting caries using bitewing or peri-
apical radiographs [11, 17, 20], determining ectopic eruption
[11] and maxillary sinusitis with panoramic radiographs [21],
diagnosing osteoarthritis on cone-beam computed tomography
(CBCT) [22], identifying lateral mandibular deviation through
cephalograms [18], and detecting impacted supernumerary
teeth [16]. Additionally, Al has effectively identified white
spot lesions [23] and hypoplastic lesions on photographic im-
ages [24].

Dental ankylosis is challenging to diagnose. Although
panoramic radiography is essential for its detection, image
interpretation can be complex [7, 1 1]. Furthermore, traditional
radiographic interpretation is inherently subjective and
susceptible to human error, influenced by fatigue and
experience levels. A missed or delayed diagnosis of dental
ankylosis can lead to more severe clinical outcomes and
potentially more complex and costly interventions later on
[25, 26]. The use of Al in medical imaging, particularly deep
learning models, has shown promise in improving diagnostic
accuracy and efficiency [11, 15]. We identified a significant
gap in the literature and in clinical practice regarding the use
of Al for detecting dental ankylosis, particularly in primary
molars using panoramic radiographs. This gap highlights the
timeliness and relevance of this study.

This study aimed to address the limitations of traditional
diagnostic methods such as time constraints, high costs, and
potential human errors. The objective was to develop an
accurate deep learning model for detecting ankylosed primary
molars from panoramic radiographs.

In our study, the null hypothesis (Hp) posited that there is
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no significant difference between the performance of our Al
model and chance performance. Thus, if Hy is true, the model’s
predictive ability is no better than random guessing. To test this
hypothesis, we employed several evaluation metrics, including
accuracy, AUC (Area Under the ROC (Receiver Operating
Characteristic) Curve), sensitivity, and F1-Score, as previously
used in deep learning or machine learning studies [10, 11, 16,
27, 28]. Each metric is statistically connected to Ho by setting
up confidence intervals and performing hypothesis tests.

2. Materials and methods

This retrospective study was approved by the Scientific Re-
search Ethics Committee of Karadeniz Technical University
Faculty of Dentistry (Protocol No. 2023/18, dated 19 June
2023). Given the retrospective nature of the analysis, informed
consent from individual patients was not obtained. However,
to ensure confidentiality and compliance with ethical stan-
dards, all patient data was anonymized before analysis. To
ensure privacy, personal identifiers were removed, and data
were aggregated. A retrospective analysis was conducted on
pediatric patients (aged 4 to 15) who had panoramic radio-
graphs taken between January 2015 and August 2023 at the
Karadeniz Technical University Faculty of Dentistry (Trabzon,
Turkey). Ankylosis was determined by analyzing panoramic
X-ray images during their classification to determine the pres-
ence or absence of ankylosis (Fig. 1).

All panoramic radiograph images were taken with the
Sirona Orthophos XG3 (Dentsply Sirona, Bensheim, HE,
Germany) panoramic device (62 kV, 8 mA, 14.1 seconds)
and saved in Joint Photographic Experts Group (JPEG)
format. Sirona Orthophos XG3 (Dentsply Sirona, Bensheim,
Germany) panoramic radiography device used in this study
provides high-resolution imaging and is widely used in
dentistry practices. The device uses a 0.5 mm X-ray tube
and digital sensor technology to provide clear and detailed
panoramic images. In addition, there is a special pediatric
mode that reduces radiation dose for pediatric patients and
allows detailed examination of teeth and jaw structures with
various imaging programs [29]. Exclusion criteria in the study
included radiographs with excessive blurriness, inadequate
exposure, motion artifacts, or obscure or unclear anatomical
structures. Alternatively, radiographs of children aged 4 to 15
years containing ankylosed primary molars met the inclusion
criteria. Children who did not exhibit dental ankylosis were
designated as controls (Table 1). The VGG Image Annotator
(VIA) program was used to label teeth identified with dental
ankylosis.

This table illustrates the gender and age distribution of
patients in the study who had radiographs with and without
ankylosed teeth.

Sample size was calculated based on a previous study [11]
with alpha error = 0.05 and beta error = 0.20. Thus, it was
decided to use at least 200 images. To avoid data loss (such
as poor-quality images), at least 240 panoramic radiographs
were used. Ultimately, due to the limited number of ankylosed
primary teeth cases between January 2015 and August 2023,
268 panoramic radiographs were used: 98 cases and 170
controls.
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FIGURE 1. Decision flow of the system (the relevant figure illustrates the overall workflow of the study methodology).

VGGI16: Visual Geometry Group 16-layer.

TABLE 1. Gender and age distribution of cases

Cases Gender Age (mean = sd)
Girl Boy
N (%) N (%)
Ankylosed 52 (53.1) 46 (46.9) 8.13 + 1.751
Non-ankylosed 81 (47.6) 89 (52.4) 7.18 &+ 1.605

sd: Standard Deviation.

Candidate digital panoramic radiographic images were
screened based on medical records.  Two experienced
pediatric dentists, one with 6 years of experience (NY) and
the other with 16 years of experience (TT) independently
classified the images as cases or controls using the same
monitor and environment. When the two dentists could not
reach a consensus on a diagnosis, despite discussions, the
image was excluded.

Due to the relatively limited number of X-rays in the target
dataset, various data augmentation techniques were applied.
Initially, a network structure was created and evaluated using
the classical CNN (AT&T Bell Labs, Murray Hill, NJ, USA)
method. Although data augmentation was applied, CNN per-
formed relatively poorly. Therefore, transfer learning was used
to improve performance. For the purpose of transfer learning,
the performance of well-known and current neural network
models, such as Inception V3 (Google, Mountain View, CA,
USA), MobileNet V2 (Google, Mountain View, CA, USA) and
Visual Geometry Group 16-layer (Visual Geometry Group-
VGG, Oxford, UK) (VGG16), which had previously demon-
strated high performance, was examined (Fig. 2) [30-32].
Images identified as ankylosis and those known to be non-
ankylosis were processed sequentially for data augmentation
and preprocessing Then, classification was performed using

deep learning models. Finally, the classification performance
was evaluated.

Experiments were conducted using Python (Phyton Soft-
ware Foundation, USA) programming language on an i5 pro-
cessor computer with Windows (Microsoft Corporation, Red-
mond, WA, USA) operating system.

2.1 Data preprocessing

Panoramic dental X-ray images contain extraneous spaces or
bones visible outside the jaw. Therefore, a cropping process
was applied to the left-right and top-bottom regions to obtain an
image where only the jaw structure is visible. This eliminated
unwanted areas and provided a clearer image. Visual examples
of the cropping parameters used, along with before-and-after
images, would enhance clarity and aid reproducibility (Fig. 3).
Image pixels were normalized between [0—1] (Pnorm).

P —
Pnorm =

Pma:c

Pmin
- szn

80% of the cropped images have been designated for training
(10% for validation and 10% for testing). Separate datasets for
training, validation, and testing were created. Data augmenta-
tion was then applied separately to each dataset. This ensured
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FIGURE 2. Steps of the ankylosis detection methodology.
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FIGURE 3. Examples of images generated randomly for data purposes. (a) Randomly generated image examples for
data augmentation copy not augmented. (b) Randomly generated image examples for data augmentation copy vertical flipped
and rotated. (c) Randomly generated image examples for data augmentation copy channel shifted and rotated. (d) Randomly
generated image examples for data augmentation copy vertical shifted and rotated. (e) Randomly generated image examples
for data augmentation vertically flipped and channel shifted, and rotated. (f) Randomly generated image examples for data
augmentation vertically shifted and rotated.

that augmented images from the training dataset did not appear
in the validation and test sets. The data augmentation process
(horizontal shift, random vertical shift, shear transformation,
random zoom, horizontal flip, vertical flip, channel shift) was
performed to generate 20 new images from each original im-
age.

The augmented images were resized to 156 x 156 pix-
els. The choice of pixel size was based on both model per-
formance and processing efficiency. Resizing standardizes
image size, making them easier to process. Additionally,

separate lists were created for training, validation, and test-
ing: train_images, train_labels, valid images, valid labels,
test images and test labels [9—11]. The data was shuffled to
prevent memorization. This improved the model’s ability to
generalize, leading to better results.

2.2 Deep learning models for dental
ankylosis classification

This study employed two learning methods: training from
scratch and transfer learning. Alongside the CNN method
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trained from scratch, the transfer learning method was
adapted to three different neural network models (VGG16,
Inception V3 and MobileNet V2) for categorizing panoramic
radiographic images to detect ankylosed or non-ankylosed
cases [30-32].

The VGG16 architecture consists of 16 layers, including 13
convolutional layers and 3 fully connected layers. A Red-
Green-Blue (RGB) image with a size of 224 x 224 pixels is
input to the network. The input image is passed through a
series of convolutional layers. VGG16 uses 3 x 3 filters for
each convolution and applies the Rectified Linear Unit (ReLU)
activation function after each convolution. Pooling layers are
applied after convolutional layers to reduce dimensions. The
feature maps obtained from the convolutional and pooling
layers are connected to fully connected layers. These layers
perform high-level feature extraction and produce classifica-
tion output [30].

Inception V3 is a deep architecture with 48 initial layers,
consisting of four convolutional layers with activation func-
tions and two max-pooling layers. The input layer of the
Inception V3 model takes an image with a size of 299 x
299 pixels and RGB color channels. Convolutional layers are
employed to extract different features from the image. The
core structure of Inception V3 is the Inception modules. These
modules combine different sizes and types of convolutions (1
x 1,3 x 3,5 x 5) and max pooling layers. This enables

the network to detect features at varying scales. In addition,
Inception V3 employs global average pooling as a pooling
method. In the later stages of the network, there are fully
connected neural network layers and an output layer where
classification results are obtained [31-33].

MobileNet V2 accepts an image of 224 x 224 pixels as
input. The input image passes through several convolutional
layers with different filter numbers. A non-linear activation
function is applied after each convolutional layer. These
layers extract low-level features from the image. MobileNet
V2 incorporates bottleneck layers, which feature fewer filters
followed by 1 x 1 convolutions that reduce dimensions. This
reduces the number of parameters and computational costs
while maintaining representational power. After the bottleneck
layers, expansion layers with a higher number of filters are
added. These layers use 1 x 1 convolutions to expand the
dimensions of the features [32] (Table 2, Ref. [30-32]).

This table provides structural summaries of the artificial
intelligence models used in the study.

In the study the model’s performance was assessed using
each of metrics (accuracy, AUC, sensitivity, and F1-Score) to
comprehensively assess whether to reject Hy. An accuracy of
50% in binary classification indicates that the model performs
no better than random chance [34].

TABLE 2. Contents of model [30-32].

Model Structure Summary
e Sequential model with 2 Conv2D layers (256 filters in the first, 128 filters in the second)
e Batch Normalization after each Conv2D layer

CNN

e MaxPooling after each Conv2D layer

e Dropout layers with a rate of 0.7 after each MaxPooling layer

e Flatten layer

e Dense layers (32, 64 and 1 neuron respectively)
o VGG16 Base Model with imagenet weights

VGGl6

e Flatten layer
e Dense layer with 1024 neuron
e Dropout layer

e Dense layer (output layer)
e Inception V3 Base Model with imagenet weights
® Global average pooling

Inception V3

e Flatten layer
e Dense layer with 32 neuron
e Dropout layer

e Dense layer with 32 neuron

e Dropout layer

e Dense layer (output layer)
e MobileNet V2 Base Model with imagenet weights
o Global average pooling

MobileNet V2

e Flatten layer
e Dense layer with 32 neuron
e Dropout layer

e Dense layer with 32 neuron

e Dropout layer

e Dense layer (output layer)

CNN: Classical convolutional neural network; VGG16: Visual Geometry Group 16-layer.



2.3 Evaluation metrics

In the study, accuracy, Area Under Curve (AUC), sensitivity,
specificity, and F1-score were used to evaluate the model’s per-
formance. For each sample, True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) values were
calculated based on the predicted class. Accuracy (Acc) was
measured as the ratio of correctly identified samples to the total
number of samples [10, 11, 16].

TP + TN

A p—
“= TP+ FP+ TN + FN

Area Under Curve (AUC) represents the area under the Re-
ceiver Operating Characteristic (ROC) curve. To evaluate the
classification model’s performance, an AUC was determined;
the closer it is to 1, the better the model is. The sensitivity
formula (Sensitivity = TP/(TP + FN)) was used to measure
the ratio of true positives (TP) to total positives (TP + FN).
The specificity value was utilized as a measure of how many
negative class examples were correctly predicted (Specificity
= TN/(TN + FP)). A harmonic mean of precision and recall
was calculated using the F1-score formula (F1-score = TP/(TP
+ 1/2[FP + FN])) [10, 11, 16]. In this study, x-ray images with
ankylosis were labeled 1, and those without ankylosis were
labeled 0.

3. Results

3.1 Loss and accuracy of the models' results

When examining the training loss and accuracy graphs for
CNN, it was understood that the training loss value consis-
tently decreased and converged to a loss value of around 0.25.
Similarly, the training accuracy value steadily increased and
converged to around 0.90. This indicates that the training data
was well learned. A well-trained model was also shown in the
loss and accuracy graphs for the VGG16 training set. How-

Training Accuracy

0.85

Accuracy
o
®
3

= CNN
VGG16
=== |nception V3

= MobileNet V2

T T T T T
0 5 10 15 20 25

Epoch
(@) ?

125

ever, after the 10th epoch, the loss and accuracy values did not
significantly improve for the validation value. Additionally,
Inception V3’s loss and accuracy graphs also indicated the
model was well trained. However, after the 10th epoch, the
loss and accuracy values did not significantly improve. The
loss and accuracy graphs for the MobileNet V2 training set
showed that the model learned the training data well (Fig. 4).

A consistent decrease in loss and accuracy was not observed
in the CNN validation set. Upon reaching the 25th epoch, the
loss value increased, while the accuracy value decreased. In
this case, overfitting began after the 25th epoch. Therefore, the
best validation accuracy was 0.71. VGG16 validation accuracy
and loss values did not consistently decrease after the first 10
epochs and even deteriorated. In this case, the model overfitted
the training data. Therefore, the network model at the best
point was saved. For Inception V3, the validation accuracy
and loss values showed irregularities. While the training data
consistently improved, the validation graph suggested that the
Inception V3 model might have overfitted. Therefore, the
network model at the best point was saved.

For MobileNet V2, instability in loss and accuracy values
was observed in the validation data after the Sth epoch. The
accuracy and loss values did not consistently decrease after
the first 10 epochs and even showed adverse progress in some
epochs. In the last 2 epochs, an increase was observed (Fig. 5).
Essentially, no significant improvement in validation perfor-
mance was noticed after the epoch of increasing gaps between
training and validation, which indicates overfitting. This study
employed the dropout method to prevent overfitting. To reduce
the overfitting tendency of the model, the dropout value was
initially set at 0.7 in all models. However, different dropout
values (0.3, 0.5, 0.7) were tested and the most suitable value
was determined.

3.2 Classification of models

Sensitivity, specificity, accuracy, AUC and F1-Score results
obtained for all models used in the study are shown in Table 3.

Training Loss

= CNN

071 VGG16

Inception V3
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FIGURE 4. Training accuracy and loss figure. (a) Training accuracy of each model; (b) Training loss of each model. The
training accuracy and loss plots show that VGG16 and Inception V3 reach faster convergence and higher accuracy, whereas CNN
demonstrates the lowest performance among the tested models. Notably, VGG16 achieves the best training results, featuring the
highest accuracy and the lowest loss. CNN: Classical convolutional neural network; VGG16: Visual Geometry Group 16-layer.
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FIGURE 5. Validation accuracy and loss figure. (a) Validation accuracy of each model; (b) Validation loss of each model.
The validation accuracy plot indicates VGG16 achieves the highest accuracy, but the validation loss plot reveals VGG16 also
exhibits increasing loss, suggesting overfitting; in contrast, CNN shows the lowest validation accuracy among the models. CNN:
Classical convolutional neural network; VGG16: Visual Geometry Group 16-layer.

TABLE 3. Comparison of the models according to accuracy, AUC score and specifity metrics.

CNN VGG16
Sensitivity 0.28 0.89%
Specificity 0.96 0.91
Accuracy 0.71 0.90
AUC 0.79 0.95
F1-Score 0.42 0.87*

*It denotes the maximum values across all rows.

MobileNet V2 Inception V3
0.77 0.79
0.92 0.98%*
0.86 0.91%*
0.88 0.96*
0.81 0.86

AUC: Area Under Curve; CNN: Classical

convolutional neural network; VGG16: Visual Geometry Group 16-layer.

An analysis of the ROC curve (Fig. 6) and Table 3 values
revealed that non-ankylosed images were well-detected, but
the CNN model was found less effective at detecting ankylosed
images. The CNN model detected ankylosis with a 0.28
sensitivity value.

Apart from CNN, sensitivity/specificity/accuracy/AUC/F1-
Score wvalues in Table 3 were differentiated as
followed: VGG16 (0.89/0.91/0.90/0.95/0.87), Mobile
NetV2  (0.77/0.92/0.86/0.88/0.81) and Inception V3
(0.79/0.98/0.91/0.96/0.86).  According to the highest and
lowest values for each metric, the sensitivity values ranged
from VGG16 (0.89) to CNN (0.28), the specificity values from
Inception V3 (0.98) to VGG16 (0.91), the accuracy values
from Inception V3 (0.91) to CNN (0.71), the AUC values
from Inception V3 (0.96) to CNN (0.79), and the F1-Score
values from VGG16 (0.87) to CNN (0.42). All the highest
values when comparing the metrics among the groups were
summarized in Table 3.

The table reveals the highest and lowest values for each
metric: sensitivity values range from the lowest in CNN to
the highest in VGG16, specificity values vary from Inception
V3 as the highest to VGG16 as the lowest, accuracy values go
from Inception V3 at the highest to CNN at the lowest, AUC
values also range from Inception V3 as the highest to CNN
as the lowest, and F1-Score values vary from VGG16 at the

highest to CNN at the lowest (Higher value indicates better
performance).

4. Discussion

Dental ankylosis is an eruption anomaly characterized by the
fusion of the tooth root and alveolar bone, resulting in the
obliteration of the periodontal ligament space. This condition
is particularly prevalent among children aged 7 to 11 years, and
early diagnosis is crucial to prevent serious complications such
as vertical bone loss, dental asymmetry, and loss of arch space
[1-5, 7].

Dental experts recommend combining clinical and radio-
graphic examinations for ankylosed primary teeth diagnosis,
with panoramic radiographs considered a routine approach [1].
Previous studies reported that CNNs can classify and segment
periapical, bitewing, CBCT, and panoramic radiographs to
detect caries and anatomical structures, with panoramic radio-
graphy being the most widely used technique [35, 36].

Due to the advantages of Al technologies, dentists are in-
creasingly using them for diagnosis, which improves diagnos-
tic efficiency and enables earlier diagnosis and intervention
[37]. Integration of Al-enabled systems into clinical appli-
cations optimizes workflow and enhances cost-effectiveness
in dental practices. With Al-based imaging and diagnostic
systems, the time spent on each patient can be reduced, improv-
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FIGURE 6. ROC curve and AUCs of the models. The validation accuracy plot shows that VGG16 attains the highest
accuracy; however, the validation loss plot indicates that VGG16 also experiences increasing loss, signaling potential overfitting.
In contrast, CNN exhibits the lowest validation accuracy among all the models. CNN: Classical convolutional neural network;

VGGI16: Visual Geometry Group 16-layer.

ing clinical efficiency. Furthermore, Al-based applications in
specific areas such as caries detection reduce treatment costs
by minimizing missed lesions. Al integration also streamlines
administrative tasks like scheduling appointments, updating
patient records, and responding to routine inquiries. By au-
tomating these processes, clinical staff can concentrate on
addressing more complex patient needs, ultimately saving time
and resources [38].

To determine the best Al model, various models’ suitability
has been tested against study methods and disease diagnosis
criteria. While more advanced models exist than those used in
this study, they require higher computational power. This study
used models that can be easily applied to clinical settings and
could potentially improve their performance with the addition
of more images [10, 11, 39].

Dentists’ decision-making during diagnosis has been facil-
itated using machine learning, with deep learning methods
being employed to detect dental caries, supernumerary teeth,
dental anomalies, and other dental conditions [10, 11, 40].
In this study, the effectiveness of Al, specifically the deep
learning approach, in detecting ankylosis on dental panoramic
x-ray images was evaluated. Aside from the sensitivity and F1-
Scores of CNN, the Hy was rejected (when considering 50%
as borderline) indicating that Al-assisted deep learning models
performed better than random predictions.

In earlier studies, a Region of Interest (ROI) was extracted
from the original X-ray image for the deep learning model to
predict diagnosis [11, 16, 20]. In our study, cases of ankylosis
are localized to specific regions within the images, suggesting
that training on the entire image set may not effectively learn
the diagnosis of ankylosis. Therefore, during deep learning,
cropping was performed on both ankylosed and non-ankylosed
images to focus on ROIs. This approach aims to enable deep
learning to easily identify the most relevant regions for clas-
sification, thereby enhancing the model’s ability to accurately
detect cases [11, 41].

It is often easier to train direct classification systems than
segmentation, which requires human experts to delineate con-
tours or record coordinates for every sample. However, hu-
man annotation can introduce errors and biases. Probability
estimates in each category can be affected by these errors.
Despite significant differences in diagnostic probabilities, a
positive diagnosis could still be made [11, 42]. However,
in comparison to segmentation-based models, classification-
based models can be further improved by retraining them with
manually labeled data [11].

In this study, similar to previous research, four different
structure models—CNN, VGG16, Inception V3 and
MobileNet V2 were used, and metrics such as accuracy,
AUC score, sensitivity, specificity, and F1-Score were
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evaluated [10, 11, 16, 35, 39, 43]. As observed in our study,
training loss values decreased, which is consistent with the
results of a study using deep learning algorithms to detect
supernumerary teeth in dentistry [10]. Thus, based on the
training accuracy and loss values obtained in this study, it
was concluded that all models could be generally trained to
acceptable levels. However, the validation loss and accuracy
values differed from those reported in the literature [10].
Alongside these differences, overfitting was observed in all
models at various epochs, with optimal validation values
identified, but no significant improvement in validation
performance after the onset of overfitting epochs. Study
designs, sample types, and sizes may explain the variability in
results observed in this study compared to previous findings
[10].

Sensitivity is considered a crucial measure in disease screen-
ing to avoid false-negative diagnoses [10]. As observed by the
sensitivity results, CNN exhibited the lowest value (0.28) com-
pared to VGG16 (0.89), MobileNet V2 (0.77) and Inception V3
(0.79). Because of the low sensitivity of the condition, there
is a risk of missing truly ankylosed cases when using the CNN
model.

Findings in the dental literature report sensitivity values
for VGG16 at 0.58, 0.74 and 0.85 and specificity values at
0.70, 0.79 and 0.83. For Inception V2 and/or V3, sensitivity
values were reported at 0.82 and 0.90 and a specificity value
at 0.78. For MobileNet V2, sensitivity values were 0.62 and
0.89, and specificity was 0.85 [10, 11, 23, 39, 44]. Similarly,
our sensitivity and specificity findings were consistent with
previous findings [10, 11,23, 39, 44]. According to Mine et al.
[10], when testing for presence of supernumerary teeth in early
mixed dentition using deep learning, VGG16 had the highest
sensitivity value (0.85), with all models, including AlexNet,
VGG16, and Inception V3, showed high sensitivity values.
In our study, VGG16 model had a higher sensitivity value
(0.89) than Inception V3 (0.79). Also, MobileNet V2 showed
a slightly lower value (0.77) than Inception V3. To avoid
missing true positives, it is advantageous to use Inception V3,
specifically VGG16, in comparison to MobileNet V2.

Higher accuracy values indicate the model’s overall ability
to produce correct results [16, 36] and higher AUC values
demonstrate the model’s ability to perform effective classifica-
tion [45]. In this study, Inception V3 exhibited slightly higher
accuracy (0.91) and AUC (0.96) values than VGG16 (0.90 and
0.95), respectively. MobileNet V2 (0.86 and 0.88) and CNN
(0.71 and 0.79) exhibited lower values than both Inception V3
and VGG16. Compared to MobileNet V2 and CNN, Inception
V3 and VGG16 may offer better detection of true positive and
negative cases.

A high F1-Score value indicates the model’s overall high
performance and suggests balanced classification [11]. Over-
all, VGG16 achieved the highest performance in this met-
ric, while Inception V3 showed very close F1-Score perfor-
mance. VGGI16 and Inception V3 models are both capable
of classifying ankylosed and non-ankylosed images with high
performance and balance. VGG16 and Inception V3 models
generally excel in performance over MobileNet V2 due to their
more complex architectures. These deeper models, however,
may be overfitted due to limited data sizes. Even though

MobileNet V2 is slightly less performant, it is a suitable option
for scenarios that require a lighter model.

According to the literature, VGG16 achieved AUC values
of 0.73, accuracy values of 0.57, 0.72, 0.89, and a F1-Score
of 0.56; Inception V2 and/or V3 achieved accuracy values of
0.80 and 0.88; and MobileNet V2 achieved accuracy values
of 0.62 and F1-Scores of 0.57 and 0.87 [10, 11, 16, 39, 44].
Based on the combined results, the AUC and F1-Scores are
aligned with the literature, indicating that VGG16 and In-
ception V3 could be used to detect ankylosed primary teeth
from panoramic images. However, other studies using similar
models have reported metric rankings that differ from ours
[16, 39]. Model performance may vary based on research de-
signs, explaining the discrepancy. Future developments in Al-
assisted diagnostic models for dental ankylosis could greatly
benefit from hybrid approaches and ensemble learning tech-
niques. By combining the strengths of different deep learning
architectures, hybrid models can enhance diagnostic accuracy
by leveraging complementary feature extraction capabilities.
Likewise, ensemble learning techniques that aggregate predic-
tions from various models can enhance classification reliability
and minimize model bias. By integrating these techniques,
Al-based diagnostic systems can deliver more reliable and
consistent results and ultimately aid clinical decision-making
in pediatric dentistry. These approaches should be assessed in
future studies in larger datasets and real-world clinical settings
to optimize their applicability [46, 47].

For Al systems to be used effectively and reliably, clin-
ical staff must undergo appropriate training and calibration
processes. Dentists and auxiliary staff should be trained on
Al-based tools principles, limitations and interpretation skills.
Training ensures that Al systems are used effectively and
safely to ensure patient safety and diagnostic accuracy. In addi-
tion, Al models need regular calibration and updates to perform
optimally. This process ensures the models are constantly
updated, ensuring accuracy and adaptability. Al integration
into dental practices requires both technology infrastructure
and the human factor to work in harmony [48].

Finally, this study explores the use of artificial intelligence to
detect dental ankylosis in primary molars through the analysis
of panoramic radiographs, highlighting its potential for early
diagnosis, enhanced accuracy, and improved efficiency in
dental care. However, this study has various limitations,
including diagnosing ankylosis solely based on panoramic
radiographic images, increasing case numbers statistically, and
overfitting in some models. Possible biases in this study
may be due to specific patient demographics, insufficient data
diversity in data used in model training, variability in expert la-
beling, and potential model tuning biases. The limited sample
size and use of panoramic radiographs alone could negatively
influence dental ankylosis diagnosis. Future research should
utilize three-dimensional imaging methods such as CBCT and
larger sample sizes for conditions such as ectopic eruptions or
hypoplasia lesions. Such adaptations could further enhance
diagnostic accuracy and efficiency across a wide spectrum of
dental and maxillofacial anomalies, providing valuable tools
for practitioners and addressing gaps in current clinical prac-
tices. The versatility and relevance of the model extend beyond
dental ankylosis in this suggestion.



5. Conclusions

Artificial intelligence (AI) methodologies offer significant po-
tential in pediatric dentistry by reducing clinical workload
and enhancing diagnostic accuracy, particularly in the early
detection of dental ankylosis. This study emphasizes the
effectiveness of deep learning models—specifically VGG16,
Inception V3, and MobileNet V2—in identifying ankylosis
from panoramic radiographic images. Compared to CNN,
VGG16 showed relatively greater sensitivity and accuracy in
detecting ankylosed images, highlighting the importance of
model selection in dental diagnosis. Based on these find-
ings, applying advanced Al algorithms to diagnostic work-
flows could enhance precision and patient outcomes by en-
abling earlier interventions. The limitations of certain models,
such as CNN, should also be considered by dental practitioners,
who may need to further optimize these models for reliable
clinical use.
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