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Abstract
Traditional tooth image analysis methods primarily focus on feature extraction from
individual images, often overlooking critical tooth shape and position information.
This paper presents a novel computer-aided diagnosis method, Collaborative learning
with Mask Region-based Convolutional Neural Network (Co-Mask R-CNN), designed
to enhance tooth image analysis by leveraging the integration of complementary
information. First, image enhancement is employed to generate an edge-enhanced
tooth edge image. Then, a collaborative learning strategy combined with Mask R-
CNN is introduced, where the original and edge images are input simultaneously,
and a two-stream encoder extracts feature maps from complementary images. By
utilizing an attention mechanism, the output features from the two branches are
dynamically fused, quantifying the relative importance of the two complementary
images at different spatial positions. Finally, the fused feature map is utilized for
tooth instance segmentation. Extensive experiments are conducted using a proprietary
dataset to evaluate the effectiveness of Co-Mask R-CNN, and the results are compared
against those of an alternative segmentation network. The results demonstrate that Co-
Mask R-CNN outperforms the other networks in terms of both segmentation accuracy
and robustness. Consequently, this method holds considerable promise for providing
medical professionals with precise tooth segmentation results, establishing a reliable
foundation for subsequent tooth disease diagnosis and treatment.
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1. Introduction

The continuous integration of computer-aided technology and
artificial intelligence has accelerated automation in various in-
dustries. Image understanding technology has received exten-
sive attention in the field of medical image analysis. It can be
used for segmentation, reconstruction and three-dimensional
visualization of medical images, thus opening up new possi-
bilities for advances in medical imaging and diagnostic pro-
cesses [1]. X-ray imaging is very common in dental images
commonly used by oral and maxillofacial surgeons. This type
of imaging utilizes X-rays, which vary in intensity due to
the density and thickness of different tissues, to penetrate the
body. The resulting images show varying degrees of brightness
or black-and-white contrast. In addition, X-rays are cost-
effective and have a low radiation dose [2–4]. However, there
are two major challenges in the use of X-rays for diagnosing
oral diseases. First, the boundaries of tooth structures in
images often show blurring due to factors such as missing
and overlapping teeth, as well as significant differences in
the distribution of tooth and pulp tissue. Second, due to the

widespread use of restorative and implant materials, some
dental metallic materials producemetal artefacts, which reduce
contrast and blur structures and ultimately affect the dental im-
age quality and disease diagnosis outcomes [5]. In traditional
X-ray diagnostic methods, dentists rely mainly on personal ex-
perience and visual perception to analyse dental structures and
formulate treatment plans, which can bring about a high degree
of subjectivity. In contrast, deep learning-based medical image
understanding techniques can help dentists achieve automated
image interpretation. Accurate dental image segmentation
and recognition can assist in clinical decision-making, thus
improving clinical efficiency and reducing misdiagnosis rates
[6].

Traditional tooth image segmentation methods include var-
ious approaches, such as threshold-based segmentation meth-
ods [7–9], edge detection-based segmentationmethods [10, 11]
and region-based image segmentationmethods [12–14]. These
methods have been applied to dental image segmentation, but
they have several limitations, such as weak robustness to image
noise and artefacts, which can easily cause degradation of
segmentation performance.
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With the rise of deep learning algorithms such as convolu-
tional neural networks, the development prospects of medical
image analysis automation are more objective. Compared with
traditional dental instance segmentation methods that need
complex rules for modelling, data-driven deep learning meth-
ods have stronger modelling and generalization capabilities.
Among them, Mask R-CNN (Mask Region-based Convolu-
tional Neural Network) [15] has attracted much attention for
its excellent high accuracy, high scalability, multitask learning
ability andmigratory nature. Jader et al. [16] proposed the first
system capable of detecting and segmenting each tooth in a
panoramic radiograph image. Pinheiro et al. [17] investigated
and compared two Mask R-CNN-based schemes to improve
rough segmentation boundaries. In 2022, Chandrashekar et al.
[18] introduced a collaborative learning model that improves
learning performance by combining an independent tooth in-
stance segmentation model, Mask R-CNN, with a recognition
model, Faster R-CNN [19]. Lee et al. [20] differed from the
approach of Jader et al. [16] in that each panoramic radiograph
in the dental images used in this study generated multiple
independently annotated mask images based on the number
of teeth included. Zhao et al. [21], based on the instance
segmentation model Mask R-CNN combined with the U-Net
architecture, modified the segmentation branching to improve
the segmentation effect. Chung et al. [22] proposed a pixel
labelling-based neural network that is robust to metal artefacts.
Silva et al. [23] analysed the performance of four classical
network architectures (Mask R-CNN [15], PANet (Path Aggre-
gation Network) [24], HTC (Hybrid Task Cascade for Instance
Segmentation) [25], and ResNeSt (Split-Attention Networks)
[26]) on standard panoramic X-ray film datasets. The results
show that these architectures can be used for dental instance
segmentation and numbering tasks, with PANet performing the
best. Leite et al. [27] proposed a segmentation framework that
combines two deep convolutional neural networks, DeepLab-
v3 and FCN-ResNet101. However, this study used clear
images of adolescent teeth and lacked consideration of the
effects of the presence of artefacts, implants, and changes
in teeth between patient and patient age. These methods
have achieved good results in tooth instance segmentation;
however, instance segmentation applied to the dental domain
still has the following problems. (1) There is an insufficient
quantity of data: the quantity of data in the dental domain is
relatively small compared to that in other domains, as is the
high cost of annotation, which makes it difficult to expand
the data. (2) Morphological diversity: the diversity of tooth
morphology makes the instance segmentation algorithm more
complex. (3) Poor image quality: In the field of teeth, due to
the interference of metal artefacts, which often leads to blurred
or inconspicuous edges of the teeth and occlusion between the
teeth, algorithms need to determine which pixels belong to
which teeth and segment them, which puts a higher demand
on the accuracy and robustness of the algorithms.
In conclusion, although the improved method based on

Mask R-CNN achieved satisfactory experimental results, lim-
itations such as the effect of clinical data noise and insufficient
extraction of global contextual information from the feature
extraction module still hinder the effectiveness of the dental in-
stance segmentationmethod in dealing with region boundaries.

However, collaborative learning integrates multiple pieces of
input information, allows information exchange and sharing
between original and edge images, and can comprehensively
consider feature representations in different image spaces, thus
improving the learning capability of the whole system and
resulting in better model generalization performance and re-
ducing the risk of overfitting. Therefore, in this paper, we
propose an improvedmethod for complementary image feature
fusion based on the attention mechanism from the perspective
of collaborative learning, which can extract more comprehen-
sive contextual information. The contributions of our approach
are worth mentioning and can be summarized as follows.
A Co-Mask R-CNN network is proposed that features image

enhancement, dual-branch feature extraction, and dynamic
feature fusion, allowing for reduced noise and sharper textural
details in clinical images, resulting in more robust and corre-
lated feature extraction with a strong global context.
A collaborative learning strategy is introduced, incorpo-

rating an image enhancement branch to acquire tooth edge
images, which, combined with tooth and contextual back-
ground information from the original images, comprehensively
considers tooth edge information to obtain more complete
features.
An attention module is employed to dynamically determine

the feature representations obtained from different branches,
establishing long-range dependencies between different loca-
tions, which aids in better understanding the interrelationships
between different positions and capturing semantic correla-
tions more effectively.

2. Materials and methods

2.1 Network architecture
There are several issues with the current methods for improv-
ing Mask R-CNN. First, for the extracted regions of interest
(RoI), the mask branch uses full convolutional operations for
semantic segmentation. While fully convolutional operations
have good sensitivity to local semantic information, they ne-
glect contextual information. Second, Mask R-CNN utilizes a
two-stage strategy involving detection followed by segmenta-
tion, with the segmentation results constrained by the detection
outcomes. Finally, while the model performs relatively well
for well-conditioned teeth, it is prone to errors when teeth
are missing and lacks consideration of shape and position
information. To address the aforementioned challenges, our
proposed solution is a collaborative learning network model
known as the Co-Mask R-CNN, as illustrated in Fig. 1.
The Co-Mask R-CNN method adopts an encoder-decoder

structure consisting of three main modules: an image enhance-
ment module, a collaborative learning module, and a feature
fusion module. The image enhancement module aims to im-
prove the contrast and accentuate the textural details present in
the original image, thereby aiding in detecting tooth edge lines.
The original and enhanced images are fed into the collaborative
learning module, where the encoder extracts complementary
features from the tooth-related images to obtain complemen-
tary information. The feature fusion module utilizes the at-
tention mechanism proposed by Fu et al. [28] to dynamically
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FIGURE 1. Co-Mask R-CNN Network Structure. FPN: Feature Pyramid Network; RPN: Region Proposal Network.

fuse the feature maps extracted by the collaborative learning
module. This attention mechanism can incorporate contextual
information and compensate for the lack of deep features in
Mask R-CNN. Additionally, the weight distributions of the
two input images in the model can be adaptively adjusted
to achieve optimal weight ratios. Ultimately, the prediction
branch produces the ultimate segmentation map. In the follow-
ing sections, we explain the implementation details for each of
these components.

2.1.1 Image enhancement
To reduce brightness, inconsistent exposure, and blurred edges.
These factors significantly impact the effectiveness of seg-
mentation networks, image enhancement is crucial in X-ray
images. The present investigation introduces a data augmen-
tation technique to address these challenges inspired by the
methodology established by Zhou et al. [29]. To alleviate
the issue of indistinct dental boundaries, we employ the So-
bel operator to convolve the image and enhance the promi-
nence of edge information, resulting in edge image generation.
This approach reduces noise, enhances image contrast and
sharpness, and standardizes image quality to sharpen textural
details. Edge images enhance the edge-related information
within the original image, emphasizing the outlines and forms
of the teeth. In contrast, the original image presented a more
comprehensive depiction of dental information, encompassing
contextual background details as well.
In the enhancement process, the contrast-enhanced image

Ice(x,y;δ) is obtained through the following formula:

Ice (x, y; δ) =ηI (x, y) + θG (x, y; δ) ∗ I (x, y)
+ S (x, y) ∗ I (x, y) + β

(1)

Where I(x,y) is the raw bitewing radiograph, * denotes the
convolution operator, G(x,y;δ) represents the Gaussian filter
with standard deviation δ, and S(x,y) denotes the Sobel filter
with a 3 × 3 kernel. The contrast-enhanced images are used
as inputs for one branch of the collaborative learning network
model. Fig. 2 shows the effect of applying image enhancement,
where (1) is the original image, (2) is the image enhancement
by Zhou et al. [29], and (3) is the edge image. As shown in the
figure, the edge image provides higher contrast and brightness

and sharper edges than does the original and Zhou’s methods.

2.1.2 Complementary feature colearning
Although image enhancement techniques can reduce noise,
improve image quality, and sharpen texture details, they may
also alter pixel values and lead to the loss of some detailed
features. To address this challenge, we introduce a collabora-
tive learning framework inspired by the network architecture
initially proposed byKumar et al. [30], which aims to integrate
complementary information from the original and edge images
for better image analysis. Specifically, the Co-Mask R-CNN
includes an original image encoder and an edge image encoder,
which correspond to the CNN portion of the model and extract
visual features from different images.
In addition, traditional CNNs often suffer from gradient

vanishing and exploding problems when the network depth
is increased; thus, regularization initialization and interme-
diate regularization layers are required to mitigate these is-
sues. However, these methods may encounter the issue of
network degradation, where the accuracy on the training set
may reach a plateau or even decrease as the network depth
increases. Therefore, we employ a specific residual learn-
ing structure. The ResNet101 [31] architecture consists of
convolutional blocks and identity blocks, which serve as the
fundamental residual blocks. The residual learning structure
employs forward neural networks and shortcut connections.
These connections enable straightforward identity mapping
without introducing extra parameters or escalating computa-
tional complexity. The convolutional block alters network
dimensionality by having distinct input and output dimensions,
whereas the identity block deepens the network bymaintaining
the same input and output dimensions.
With these improvements, Co-Mask R-CNN can better learn

the relationship between the original and enhanced images,
thus improving the accuracy and effectiveness of image anal-
ysis.

2.1.3 Complementary feature fusion
This study incorporates a dual attentionmechanism comprising
a Channel Attention Module (CAM) and a Position Attention
Module (PAM) to leverage the extracted features from both
branches more effectively [32]. These modules dynamically
assign weights to the two branches, effectively incorporate
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FIGURE 2. Image enhancement results.

contextual information, and achieve complementary feature
aggregation. The outputs of the attention modules are trans-
formed using convolutional layers and then combined through
weighted summation to achieve feature fusion, as depicted in
Fig. 3.

2.1.3.1 Position attention module
The PAM explores the spatial relationships within the feature
maps obtained from the two branches. This is accomplished
by updating the features at specific positions and assigning
weights based on the similarities between corresponding fea-
tures at those positions. As a result, positions with simi-
lar features can mutually enhance each other, irrespective of
their spatial separation. By encoding extensive contextual
information into the original features, the PAM enhances the
representativeness significantly.
As illustrated in Fig. 4, P_enhancement and P_original

represent the feature maps of the edge image extracted after
the backbone network and the feature map of the local image,
respectively. The feature map P_enhancement ∈ RC×H×W

acquired from the enhancement branch is initially fed into a
convolutional layer, resulting in the generation of two novel
feature maps, denoted as G and F, {G,F} ∈ RC×H×W .
Subsequently, the G, F matrix is transformed into an RC×N

matrix, where N = H × W repres matrients the overall pixel
count. Through the multiplication of the transposed F and G
matrices, the spatial attention map M ∈ RN×N is derived.
To ensure normalization, a softmax function is applied to this
map, producing a normalized output.

Myx =
exp (Gx · Fy)∑N
i=1 exp (Gx · Fy)

(2)

WhereMyx ensures the influence of the xth position on the
yth position, and the correlation between the feature represen-

tations of two positions increases when their corresponding
Myx values increase. Concurrently, feature P_enhancement

undergoes a convolutional layer, generating a fresh feature
map denoted as O ∈ RC×H×W . This map is then reshaped
into RC×N . Subsequently, the dot product of O and the trans-
posed M matrix is computed, resulting in a reshaped output
RC×H×W . This outputQ ∈ RC×H×W is subsequently scaled
by the parameter λ and added elementwise to the original
features P_original ∈ RC×H×W of the input branch, as
shown below:

Qy = λ

N∑
x=1

(MyxDx) + P_originaly (3)

By initializing the weight parameter λ to 0 and progressively
adapting it during the training phase, Eqn. 3 provides valuable
insights. This approach implies that the resultant feature Q
at each position is obtained by combining features from all
positions and the original feature via weighted summation.
This mechanism facilitates the integration of global contextual
information and the selective incorporation of context guided
by the spatial attention map. As a consequence, similar se-
mantic features are mutually reinforced, leading to improved
intraclass compactness and enhanced semantic consistency.

2.1.3.2 Channel attention module
The CAM treats each channel of a feature map as a distinctive
response corresponding to a specific class, thus revealing the
interrelated nature of diverse semantic responses. By delving
into the interdependencies among channel maps, CAM has the
ability to highlight interdependence between feature channels
and enhance the specificity of semantics.
Fig. 5 illustrates the architecture of the CAM, where

P_enhancement and P_original represent the feature maps
of the edge image extracted after the backbone network and
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FIGURE 3. Dual attention network structure.

F IGURE 4. Position attention module.

F IGURE 5. Channel attention module.
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the feature map of the local image, respectively. Unlike
the PAM, feature P_enhancement is directly reshaped
into RC×N and then subjected to matrix multiplication via
transpose. The resulting feature maps are multiplied and
passed through a softmax function, generating the channel
feature map T ∈ RC×C , as shown below:

Tyx =
exp

(
P_enhancementx · P_enhancementy

)∑N
x=1 exp

(
P_enhancementx · P_enhancementy

)
(4)

Where Tyx indicates the impact of the xth channel on the
yth channel. Furthermore, matrix multiplication between T
and the transpose of P_enhancement is performed, resulting
in the reshaped feature T ∈ RC×H×W . This outcome is
then scaled by the parameter λ and added elementwise to the
original feature P_original from the input branch, yielding
the final output Q ∈ RC×H×W , as shown below:

Qy = λ

N∑
x=1

(TyxP_enhancementx) + P_originaly (5)

Where the weight parameter λ is initialized to 0 and grad-
ually assigned higher significance during the training phase.
The equation illustrates that the ultimate feature representation
of each channel is a combination of the features extracted
from all channels, including the original features, with each
channel’s contribution weighted accordingly. By performing a
weighted summation of all channels, the final feature represen-
tation can capture long-range semantic dependencies between
feature maps, improving feature distinctiveness. To leverage
the benefits of distant contextual information more effectively,
the proposed approach combines the features extracted by two
attention modules.

2.1.4 Prediction branch
The prediction branch integrates information by leveraging
the network architecture of Mask R-CNN and employing the
region proposal network (RPN) and ROI modules to extract
and consolidate relevant features from the feature maps, as de-
picted in Fig. 6. Subsequently, the feature vectors are individ-
ually fed into two separate prediction network branches. The
upper branch performs classification prediction and bounding
box regression, while the lower branch is responsible for gen-
erating masks that correspond to the detected objects.

2.2 Datasets
We collected and curated the experimental dataset from Peking
University School and Hospital of Stomatology. It encom-
passes a collection of 815 bitewing radiographs focusing on
children’s teeth. Each image was resized to 512 × 512, and
the label data were annotated by a professional dentist with
extensive clinical experience. After annotation, the researchers
used LabelMe software to pixel-level annotate the tooth area
drawn by the dentist on the bitewing radiographs. The gener-
ated annotation data were saved in JSON files, including the
contour coordinates of each tooth. These annotated data were

divided into training and testing sets for validation of the tooth
instance segmentation network.

2.3 Metrics for statistical analysis
To evaluate the performance of Co-Mask R-CNN on tooth
instance segmentation tasks, we employ metrics such as AP
(Average Precision), AR (Average Recall), and IOU (Intersec-
tion Over Union). Precision serves as a metric for assessing
the accuracy of a model when making positive predictions and
represents the percentage of correctly identified positive in-
stances. Recall quantifies the proportion of true positives in the
testing dataset that the model correctly detects, reflecting the
comprehensiveness of positive identification. The evaluation
is conducted by employing IOU thresholds of 50 and 75, along
with a range of IOU thresholds from 50 to 95 with increments
of 5. The IOU = (50:95) signifies the mAP (mean Average
Precision) calculated across various IOU thresholds, thereby
offering a comprehensive measure of the model’s performance
across a spectrum of IOU values. The inclusion of IOU
increment averaging aims to ensure that the model performs
well not only at IOU = 50 but also at higher IOU thresholds.
By calculating the AP of the model at various IOU values and
taking the average, we obtain a comprehensive assessment of
the model’s accuracy.

2.4 Implementation details
In the experimental process, the dataset was divided into a
training set and a test set at a ratio of 9:1. The training set
was subsequently divided into five parts for fivefold cross-
validation, after which the average value was taken as the
final result. The hyperparameters, such as the initial learning
rate, learning rate decay strategy and iteration number, were
dynamically adjusted, the learning rate decay method used
was the cosine function, and the initial learning rate was set
to 0.0001 at the beginning of the training process. The same
loss function as that of Mask R-CNN was used, and the cross-
entropy function was used as the classification loss. Similarly,
the SmoothL1 loss function was used as the bounding box.
Similarly, the loss function as Mask R-CNN was used. Simi-
larly, the cross-entropy function was used as the classification
loss, the SmoothL1 loss function was used as the bounding
box loss, the binary cross-entropy function was used as the
mask loss, and the sum of each loss was obtained as the final
loss value to optimize the model performance. A total of
100 iterations were carried out in the training phase of this
experiment, and as shown in Fig. 7, the decline rate of the loss
function tends to level off when the epoch is greater than 80, at
which time the final model in the training phase is determined.

3. Results

The performance of the Co-Mask R-CNN network is demon-
strated by fivefold cross-validation, and the results are shown
in the table. This experiment counts the detection and seg-
mentation results of the models separately to fully represent
the performance of the Co-Mask R-CNN network.
As shown in the table, Co-Mask R-CNN achieves better

performance than the other models; however, as the IOU
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FIGURE 6. Prediction branch.

F IGURE 7. Loss curves.

confidence increases, both the detection and segmentation
performances decrease. According to the segmentation results,
as shown in Table 1, the best results in terms of precision
for AP50, AP75 and AP50:95 are 0.988, 0.942 and 0.768,
respectively, and the recall is 0.814. Table 2 shows that the
best detection results in terms of precision for AP50, AP75
and AP50:95 are 0.988, 0.955 and 0.808, respectively, and the
best result in terms of recall is 0.844. It can be seen that the
performance of segmentation is lower than the performance of
detection because segmentation belongs to the pixel-level task,
which is more difficult compared to the detection result, and
thus the performance is lower. performance is lower.

4. Discussion

4.1 Comparisons with state-of-the-art
models

To assess the superior performance of Co-Mask R-CNN, we
performed comparative experimental analysis with popular
instance segmentation networks such as SSD (Single Shot
MultiBox Detector) [32], YOLOv3 (You Only Look Once v3)
[33], YOLOv7 (You Only Look Once v7) [34], and Mask
R-CNN [15] and evaluated the performance based on their
recall rate and accuracy at various thresholds. Notably, all
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the models were trained without utilizing pretrained weights.
Table 3 provides a comprehensive performance comparison of
the tooth image dataset. Our Co-Mask R-CNN outperforms
other classical models in terms of both precision and recall.

TABLE 1. Segmentation results.
Average Precision Average Recall

Methods AP50 AP75 AP50:95 AR50:95

Fold 1 0.988 0.935 0.760 0.809
Fold 2 0.988 0.932 0.761 0.809
Fold 3 0.987 0.942 0.767 0.814
Fold 4 0.988 0.941 0.768 0.814
Fold 5 0.987 0.932 0.754 0.803
Average 0.987 0.936 0.762 0.809

TABLE 2. Detection results.
Average Precision Average Recall

Methods AP50 AP75 AP50:95 AR50:95

Fold 1 0.988 0.955 0.805 0.840
Fold 2 0.988 0.954 0.808 0.843
Fold 3 0.987 0.952 0.807 0.844
Fold 4 0.988 0.945 0.800 0.840
Fold 5 0.988 0.951 0.805 0.841
Average 0.987 0.951 0.805 0.841

TABLE 3. Comparison of tooth segmentation results.
Average Precision Average

Recall
Methods AP50 AP75 AP50:95 AR50:95

SSD [32] 0.922 0.802 0.676 0.687
YOLOv3 [33] 0.948 0.830 0.688 0.654
YOLOv7 [34] 0.950 0.841 0.716 0.563
Mask R-CNN [15] 0.941 0.807 0.709 0.771
Co-Mask R-CNN 0.987 0.936 0.762 0.809

As shown in Table 3, at an IOU threshold of 50, the various
models perform similarly in terms of precision. However,
as the IOU threshold increases, Co-Mask R-CNN has more
advantages, achieving a much higher precision rate than other
classical models at IOU = (50:95), with a 5.3% improvement
compared to Mask R-CNN. For recall, Co-Mask R-CNN still
obtains the best results at high IOU thresholds, indicating that
it has higher accuracy in detecting objects, and the generated
detection boxes are closest to the true labels, resulting in more
precise segmentation boundaries.
These experimental findings affirm the potential effective-

ness of the proposed Co-Mask R-CNN as a viable solution for
tooth instance segmentation tasks.
The experimental results of three images are visualized

in Table 4, including a normal clear image, an image with
metal artefact noise, and an image with uneven exposure.

As shown in the first row of the normal clear image, SSD
missed some teeth, while YOLOv3 and YOLOv7made correct
detections; however, the detection scores for each tooth box
were much lower than those of the Co-Mask R-CNN. In the
second row of the image with metal artefact noise, SSD and
YOLOv7 missed some teeth, while Co-Mask R-CNN had
higher detection scores than YOLOv3 and Mask R-CNN. In
the third row, only YOLOv3 correctly detected teeth with
uneven exposure in the image, while SSD andYOLOv7missed
some teeth. Although both Mask R-CNN and Co-Mask R-
CNN exhibited instances of false detections, we demonstrated
superior performance in terms of segmentation boundaries.
The segmentation boundaries produced by the Co-Mask R-
CNNwere smoother andmore accurate than those produced by
the Mask R-CNN, resulting in a larger area of correct segmen-
tation. Especially in scenarios where the object region tends
to be larger than the background, the Co-Mask R-CNN excels
and closely approximates the true label values. Its exceptional
performance in accurately delineating tooth regions further
establishes its efficacy in this specific segmentation task.

4.2 Ablation study
To validate the effectiveness of eachmodule of the Co-MaskR-
CNN, we performed four ablation experiments using the origi-
nal image dataset and the enhanced image dataset. The first ex-
periment involved trainingMask R-CNN solely on the original
image dataset, denoted as Ms1. The second experiment trained
Mask R-CNN on the augmented image dataset, referred to as
Ms2. The Ms3 network model is a two-branch Mask R-CNN
but does not use a feature fusionmodule. Simple feature fusion
is performed by superposition of the two-branch feature map
sampling channels, and the datasets are the original image and
the enhanced image. Finally, the Co-Mask R-CNN model was
trained on both the original and augmented image datasets. The
instance segmentation results obtained from these experiments
are presented in Table 5. In this study, the segmentation
and classification results are separately discussed to facilitate
comparison with the results of other methods.

4.3 Comparison of tooth segmentation
results
A comparison of the results of the four sets of experiments is
shown in Table 6. The quantitative evaluation shows that the
collaborative learning model proposed in this paper improves
the precision rate and recall by 5.3% and 3.8%, respectively,
compared with the original Mask R-CNN model of Ms1 at
IOU = (50:95); however, Ms2 has a decrease in the precision
rate and recall by 2.1% and 2.7%, respectively, compared with
Ms1. This is because the dataset used for Ms2 is an enhanced
image, and although the enhanced image makes the edge lines
more obvious, the enhancement causes the image to lose more
detail, worsening the segmentation results. Furthermore, Ms3

has some performance improvement compared to Ms1, but
the performance decreases compared to the model proposed in
this experiment, thus proving the effectiveness of the proposed
feature fusion module.
As shown in Table 5, we present the instance segmentation

results of the ablation study on three representative dental
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TABLE 4. Tooth instance segmentation results.
SSD [32] YOLOv3 [33] YOLOv7 [34] Mask R-CNN [15] Co-Mask R-CNN

(a)

(b)

(c)

TABLE 5. Ablation study.
Input Ms1 Ms2 Ms3 Co-Mask R-CNN Ground Truth

(a)

(b)

(c)

images: a clear normal image (a), an imagewithmetal artefacts
(b), and an image with tooth loss (c). In image (a), Ms1

exhibited poor performance, with twomissed teeth and unclear
boundaries. In contrast, Ms1, Ms3 and Co-Mask R-CNN accu-
rately segmented each tooth, with Co-Mask R-CNN producing
smoother and clearer boundaries. For image (b), Ms2 also
missed teeth and produced unclear boundaries, while Co-Mask

R-CNN produced smoother and more accurate segmentation
boundaries, indicating its robustness to metal artefacts. For
image (c), all four experiments resulted in oversegmentation,
highlighting the need for improved models for images with
exposure interference and missing teeth. Compared with the
original Mask R-CNN, the Co-Mask R-CNN shows an im-
provement in tooth segmentation accuracy, demonstrating the
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TABLE 6. Comparison of tooth segmentation results.
Average Precision Average

Recall
Method AP50 AP75 AP50:95 AR50:95

Ms1 0.941 0.87 0.709 0.771
Ms2 0.946 0.857 0.688 0.744
Ms3 0.940 0.887 0.702 0.764
Co-Mask R-CNN 0.987 0.936 0.762 0.809

potential of attention to detail extraction for enhancing the
segmentation performance of neural networks. Nonetheless,
further research is required to address the challenges posed
by dental images with complex backgrounds and missing or
damaged teeth.

4.4 Comparison of tooth detection results

Table 7 shows the detection results of the four experiments,
which demonstrate that the proposed collaborative instance
segmentation model achieves the best performance in accu-
rately identifying and detecting teeth. Compared to the Mask
R-CNN Ms1, the Co-Mask R-CNN achieves 4.3% and 2.9%
improvements in precision and recall, respectively, at IOU =
(50:95), and the Co-Mask R-CNN also obtains better detection
results than does Ms3. However, Ms2 has the worst detection,
which is in line with the segmentation results. This also proves
the effectiveness of the proposed module in this study.

TABLE 7. Comparison of teeth detection results.
Average Precision Average

Recall
Method AP50 AP75 AP50:95 AR50:95

Ms1 0.934 0.844 0.762 0.812
Ms2 0.946 0.889 0.755 0.801
Ms3 0.958 0.906 0.765 0.817
Co-Mask R-CNN 0.987 0.951 0.805 0.841

In Table 5, the object detection labels and corresponding
scores are presented above the bounding boxes. For image
(a), Co-Mask R-CNN demonstrated the best detection perfor-
mance, without any missed or false detections, with the detec-
tion boxes almost perfectly overlapping with the ground truth
and with the highest detection score. Ms1 and Ms3 exhibited
instances of multiple detections, while Ms2 had the poorest
detection results with missed and false detections. For image
(b), Co-Mask R-CNN still demonstrated the best detection
performance, with accurate detection boxes. Ms1 detected the
same number of boxes as did the Co-Mask R-CNN but with
lower detection scores. Ms2 exhibited the poorest detection
results. For the image (c) with missing teeth, Ms2 had the
poorest detection results; Ms1 and Ms3 exhibited instances of
false detections, detecting six teeth; and Co-Mask R-CNN also
exhibited instances of false detections, detecting five teeth.
Nevertheless, Co-Mask R-CNN still demonstrated the best
detection performance, with higher detection scores for the

correctly detected boxes than didMs1. Therefore, the proposed
instance segmentation model provides more accurate tooth
detection, with higher recall, than does its original network.

Upon analysing the segmentation and detection results, we
observed that the performance of the Co-Mask R-CNN sur-
passed that of the Mask R-CNN model (Ms1). Furthermore,
as the IOU threshold increased, the differences among the four
experiments became more prominent. The performance of the
Co-Mask R-CNN model demonstrates its ability to produce
results that closely align with the ground truth labels, providing
further evidence of the effectiveness of the dual-branch fusion
strategy proposed in this paper. Specifically, the attention-
based feature fusion module prioritizes detailed information
extraction, thereby integrating diverse multiscale contextual
features. By employing an attention mechanism to fuse the
weights of the original and enhanced images, the issues of
inadequate global information extraction and potential seg-
mentation errors caused by localization in the conventional
Mask R-CNN were successfully resolved. This approach
significantly enhances the model’s generalization ability and
results in more precise tooth instance segmentation. The fused
model exhibits superior stability and surpasses the unfused
results.

5. Conclusions

This paper proposes a tooth image segmentation network Co-
Mask R-CNN, that integrates a self-attention mechanism and
a collaborative learning strategy. To address the issues of low
brightness and blurry boundaries in tooth images, we introduce
an image enhancement method to reduce noise, unify image
quality, and sharpen texture details.

The collaborative learning strategy is utilized to learn fea-
tures in a joint manner from both the original and enhanced
images. By incorporating an attention mechanism, the feature
maps from the two branches are dynamically fused, facilitating
the integration of complementary information. The attention
mechanism addresses the challenge of inadequate extraction
of low-level spatial information and global contextual infor-
mation by the network. This approach effectively mitigates
these limitations and enables the network to capture more
comprehensive and meaningful spatial and contextual details.
By incorporating the CAM and PAM, the proposed approach
enhances the spatial relationships between pixels, resulting
in improved tooth image segmentation performance. This
method demonstrates robust applicability and can be effec-
tively employed in various medical image segmentation tasks.
It exhibits versatility and the potential to produce reliable
results across different medical imaging scenarios. In future
research, our focus will be on further optimizing the multiscale
aspects of the method. It is worth mentioning that the present
model is restricted by the segmentation of two-dimensional
medical image slices. Nevertheless, our future endeavours will
focus on addressing segmentation tasks for higher-dimensional
medical images.
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