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Abstract
Early tooth loss in pediatric patients can lead to various complications, making quick and
accurate diagnosis essential. This study aimed to develop a novel deep learning model
for classification of missing teeth on panoramic radiographs in pediatric patients and to
assess the accuracy. The study included patients aged 8–16 years who visited the Pusan
National University Dental Hospital and underwent panoramic radiography. A total of
806 panoramic radiographs were retrospectively analyzed to determine the presence or
absence of missing teeth for each tooth number. Moreover, each panoramic radiograph
was divided into four quadrants, each of a smaller size, containing both primary and
permanent teeth, generating 3224 data. Quadrants with missing teeth (n = 1457) were
set as the experimental group, and quadrants without missing teeth (n = 1767) were set as
the control group. The data were split into training and validation sets in a 4:1 ratio, and
a 5-fold cross-validation was conducted. A gradient-weighted class activation map was
used to visualize the deep learning model. The average values of sensitivity, specificity,
accuracy, precision, recall and F1-score of this deep learning model were 0.635, 0.814,
0.738, 0.730, 0.732 and 0.731, respectively. In the experimental group, the accuracy
was the highest for missing canines and premolars, and the lowest for molars. The deep
learning model exhibited a moderate to good distinguishing power with a classification
performance of 0.730. This deep learning model and the newly defined small sized
region of interest proved adequate for classifying the presence of missing teeth.
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1. Introduction

Teeth, which are important in human life, can be lost due to
congenitally missing, traumas, caries, orthodontic issues and
other factors [1, 2]. Tooth loss can lead to a range of problems,
including loss of space, midline deviation and movement of
adjacent teeth in adults [3]. In pediatric patients, complications
may be more severe due to ongoing skeletal and alveolar
bone growth. Tooth loss at this age can negatively affect
the quality of life, causing reduced masticatory efficiency,
malocclusion and speech problems [1, 4]. Therefore, timely
and appropriate treatment is necessary to manage tooth loss
in pediatric patients. Additionally, early and precise diagnosis
holds paramount importance in attaining effective and efficient
outcomes [5].

Dentists may use various methods for oral examinations
in pediatric patients. Among these methods, X-ray imaging
is commonly used, adhering to the principle of “as low
as reasonably achievable (ALARA)” [6]. In particular,
panoramic radiography provides valuable information about

various anatomical structures, including the teeth, maxillary
sinuses and nasal septum. Therefore, panoramic images are
essential for accurate diagnosis of supernumerary, missing
and impacted teeth [7–9]. However, panoramic radiographs
can show overlapping structures and distortions owing to
imaging techniques, patient positioning and technical issues
[7]. Therefore, diagnostic accuracy can vary depending on
the clinician’s expertise in interpreting panoramic radiographs
[10, 11].
Recent advances in artificial intelligence (AI) have demon-

strated its ability to learn and execute complex tasks [12]. Deep
learning is a prominent subfield of AI, wherein an algorithm is
designed to automatically obtain the desired outcomes through
training with given pieces of information [13, 14]. Deep learn-
ing can autonomously perform information recognition, judg-
ment and classification from given data [13]. Additionally,
it can achieve high accuracy in discovering specific patterns,
making it widely used in image and video analysis [13, 15, 16].
The region to be learned and evaluated using deep learn-

ing in radiographic images is referred to as the region of
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interest (ROI). To achieve high accuracy in deep learning
algorithm systems, utilizing abundant high-quality training
data and minimizing the ROI size proves to be beneficial [17,
18]. Larger input data sizes can result in longer training times,
higher memory consumption, and the inclusion of irrelevant
information outside the ROI, potentially causing confusion
[19]. Therefore, setting the ROI to the smallest size possible
while including the necessary information for analysis can
increase training efficiency and enhance the accuracy of the
results [10, 11, 20, 21].
Recently, deep learning has been applied in various fields,

such as internet searches, gaming and medicine. In dentistry,
deep learning is primarily used for the recognition and in-
terpretation of radiographic images [15, 18, 20–23]. Since
2021, studies conducted by Ahn et al. [20] and Park et al.
[22] have demonstrated automated detection of supernumerary
teeth and implant regions using deep learning in panoramic
radiographs. Owing to the popularity of implant treatment
in adults, there is growing interest in utilizing deep learning
for the automatic detection of missing teeth in adult patients
using panoramic or cone-beam computed tomography (CBCT)
images [22, 24, 25]. However, the use of deep learning
for radiographic image analysis in pediatric patients has been
relatively limited. Currently, studies utilizing deep learning
algorithms for the automated classification of missing teeth in
pediatric patients are rare.
Therefore, this study aimed to develop a deep learning

model for classifying missing teeth on panoramic radiographs
in pediatric patients and evaluate the performance. Addition-
ally, a novel method was proposed to enhance the efficiency of
deep learning training by devising a new approach for setting
the ROI in panoramic radiographs.

2. Materials and methods

2.1 Patients
This retrospective study included patients aged 8–16 years
who visited the Pusan National University Dental Hospital
(Yangsan, South Korea) and underwent panoramic radiogra-
phy between January 2010 and February 2021. The analysis
included panoramic radiographs of patients with permanent
tooth loss due to congenitally missing, trauma, caries or ex-
tractions for orthodontic reasons. Images of poor quality
due to blurriness, distortion or other reasons that hindered
clear interpretation were excluded from the study. When a
patient underwent panoramic radiographs more than twice, it
was deemed that using all the images could be influenced by
individual factors, such as the anatomical morphology of teeth,
which might impact the results. Therefore, in such cases, only
the patient’s last panoramic radiograph was used for analy-
sis. During the specified period, 12,386 patients underwent
panoramic radiography, and 806 of these radiographs were
used. Of the 806 patients, 397 were females, and 409 were
males (Table 1).
In this study, panoramic radiographs of missing teeth were

divided into four quadrants to create four data points from
each image. Quadrants without missing teeth were designated
as the control group, whereas quadrants with missing teeth

were assigned to the experimental group. The total dataset
consisted of 3224 data, with 1767 in the control and 1457 in
the experimental groups (Table 2).

TABLE 1. Demographic data of patients in this study.
Characteristics Female Male Total
Age (SD) 11.07 (2.60) 11.18 (2.58) 11.12 (2.59)
Dentition

Mixed 258 270 528
Permanent 139 139 278
Total 397 409 806

SD: Standard deviation.

2.2 Methods
2.2.1 Panoramic radiograph analysis
Panoramic radiographs were obtained using a Proline XC ma-
chine (Planmeca Proline XC, Planmec Co., Helsinki, Finland).
After anonymization, the images were saved in a joint pho-
tographic experts group (JPEG) format. A dentist diagnosed
the presence or absence of permanent missing teeth, excluding
the third molars, on the entire panoramic radiograph. The
diagnosis was made according to the Federation Dentaire In-
ternationale (FDI) system. The presence (1) or absence (0) of
missing teeth was recorded for each tooth in the 11–17, 21–
27, 31–37 and 41–47 regions using Excel 2016 (Microsoft,
Redmond, WA, USA).

2.2.2 Image pre-processing
In this study, a single panoramic radiograph was divided into
four quadrants to minimize the size of the region of inter-
est (ROI). The matrix laboratory (MATLAB) 2022b software
(MathWorks Inc., Natick, MA, USA) was used to set the ROI.
The upper right central incisor (#11), upper left central incisor
(#21), lower left central incisor (#31), and lower right central
incisor (#41) were labeled on the panoramic radiographs using
the Image Labeler tool from the Computer Vision System
Toolbox in MATLAB (Fig. 1a,b). To define each tooth, the
mesio-incisal point angle, disto-incisal point angle, mesial ce-
mentoenamel junction, distal cementoenamel junction, mesial
root apex, distal root apex, and midpoint between adjacent
points were labeled [26]. Furthermore, the space between the
upper and lower teeth was delineated following the method
used in a previous study to set the posterior molar space
[10]. For both the maxilla and mandible, the disto-occlusal
point angle and the distal cemento-enamel junction of the most
posterior molar, the alveolar ridge connecting posteriorly, the
farthest point on the lower ramus, the cusp tip of the primary
or permanent canines, and the midpoint between adjacent
central incisors were labeled to establish the lines defining the
interdental space (Fig. 1c).

2.2.3 Region of interest determination
To smoothen the shape, the interdental space labeled in MAT-
LAB was subjected to a morphological closing operation in
all directions using a disk-shaped element with a diameter of
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TABLE 2. Information of the total data used in this study.

Characteristics
Data without missing teeth

(control group)
(n = 1767)

Data with missing teeth
(experimental group)

(n = 1457)

Total
(n = 3224)

Mean Age (SD) 11.12 (2.65) 11.13 (2.51) 11.12 (2.59)
Sex

Female 862 726 1588
Male 905 731 1636

Quadrant
1st 534 272 806
2nd 541 265 806
3rd 349 457 806
4th 343 463 806

Dentition
Mixed 1018 753 1771
Permanent 748 705 1453

SD: Standard deviation.

300 pixels. Subsequently, dilation was performed using a disk-
shaped element with a diameter of 40 pixels (Fig. 1d). The
resulting shape was skeletonized and stretched to the farthest
point of the mandibular ramus, forming the horizontal baseline
(Fig. 1e). Within the range of the horizontal baseline, the
upper part was designated as the maxilla, while the lower part
represented the mandible (Fig. 1f). Information outside the
regions of the maxilla and mandible was excluded from the
ROI setting. Furthermore, a vertical baseline was set based on
themidpoint between the central incisors (Fig. 1g). A rectangle
was designed with the width representing the distance between
the posterior point and the midpoint of the baseline and the
height representing the distance from the midpoint to the root
apex of the central incisor (Fig. 1h). To ensure that all teeth
from one quadrant were included within a single rectangle, the
width was increased by 1.2 times and the height by 1.5 times.
One rectangle was created for each quadrant, resulting in a
total of four rectangles (Fig. 1i). Only the information within
the baseline-defined regions of the rectangles was retained
(Fig. 1j). This process generated a dataset of 3224 samples
from a total of 806 panoramic radiographs.

2.2.4 Network architecture
To classify the presence of missing teeth, Inception-ResNet-
V2, which has demonstrated high accuracy in analyzing dental
radiographs using deep learning in previous studies, was em-
ployed [10, 15, 20].

2.2.5 Five-fold cross-validation and data
augmentation
The final data were used for 5-fold cross-validation. 5-fold
cross-validation allows all data to be utilized for both training
and validation, thus reducing the errors caused by a limited
amount of data. The dataset was randomly divided into five
groups, with four groups used for training and one used for
validation in each iteration. This process was repeated five
times to ensure that all five groups were used as validation

data (Fig. 2). Data augmentation techniques were applied to
increase the size of the training dataset to prevent overfitting
owing to the limited amount of data. These augmentation
techniques included rotating the data between −8 and 8 de-
grees, translating the data horizontally or vertically between
−15 and 15 pixels, scaling the data between 0.8 and 1.2 times
horizontally or vertically, and flipping the data horizontally or
vertically.

2.2.6 Training configuration
The deep learning network was trained using the Windows
10 operating system. MATLAB 2022b with a Deep Learning
Toolbox and Parallel Computing Toolbox (MathWorks, Nat-
ick, MA, USA) was installed, and the training was performed
on an NVIDIA Titan RTX GPU with an i7-8700K CPU and
32 GB of RAM running on Windows 10. The Adam optimizer
was used to train the model for a maximum of 1500 epochs,
with a mini-batch size of 16. The initial learning rate was set
to e−4. If the validation accuracy did not increase by more than
30 times, the training process was terminated.

2.2.7 Diagnostic performance evaluation
The diagnostic performance of the best-performing model was
evaluated using validation data. Sensitivity, specificity, ac-
curacy, precision, recall, F1 score, receiver operating charac-
teristic (ROC) curve, and area under the curve (AUC) were
calculated to assess the model’s performance.
• Sensitivity = TP

TP + FN

• Specificity = TN
TN + FP

• Accuracy = TP + TN
TP + TN + FN + FP

• Precision = TP
TP + FP

• Recall = TP
TP + FN

• F1 Score = 2 × (Recall × Precision)
Recall + Precision

• TP: true positive, FP: false positive, FN: false negative,
TN: true negative.
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FIGURE 1. Total flow of region of interest (ROI) setting. (a) Initial panoramic radiograph. (b) Labeling of anterior teeth. (c)
Labeling of interdental space. (d) Dilation and smoothing of interdental space. (e) Skeletonization and stretch of interdental space,
making horizontal baseline. (f) Setting the initial regions of the maxilla and mandible. (g) Exclusion of information outside the
horizontal baseline and establishment of the vertical baseline. (h) Initial setting of ROI. (i) The final ROI with the width increased
by 1.2 times and the height by 1.5 times. (j) Four final data for each quadrant from a single panoramic image.
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FIGURE 2. The 5-fold cross-validation. The data was divided randomly into five groups, with four of them serving as the
training sets and one as a validation set. ROI: Region of interest.

TABLE 3. Performance of missing teeth classification network through 5-fold cross-validation.
Pre-trained network (cv) Sensitivity Specificity Accuracy Precision Recall F1-score AUC
1 0.645 0.784 0.716 0.708 0.709 0.708 0.708
2 0.639 0.844 0.762 0.754 0.757 0.756 0.754
3 0.607 0.801 0.737 0.728 0.731 0.730 0.728
4 0.690 0.807 0.746 0.739 0.740 0.739 0.739
5 0.596 0.832 0.729 0.720 0.723 0.721 0.720
Mean 0.635 0.814 0.738 0.730 0.732 0.731 0.730
AUC: Area under the curve.

2.2.8 Model visualization

The deep learning model was visualized using a gradient-
weighted class activation mapping (Grad-CAM) technique.
The CAM represented the region on which the AI primarily
focused when making decisions about the presence or absence
of missing teeth. The visualization depicted a color gradient
from blue to red. The regions in blue indicated lower impor-
tance in the model’s decision-making process, whereas those
in red indicated higher importance [20].

3. Results

3.1 Classification performance of deep
learning model

The classification performance of the deep learning model is
presented in Table 3. The average values for the accuracy,
precision, recall, F1-score and AUC were 0.738, 0.730, 0.732,
0.731 and 0.730, respectively. The AUC values for each of the
5-fold cross-validation are shown in Fig. 3.

3.2 Visualization of model classification
Areas that theAI focused onwhile detectingmissing teethwere
visualized using Grad-CAM. Among all the data, the teeth
regions were activated. However, differences were observed
in the intensity of the red activation depending on the presence
of missing teeth and the stage of tooth development. When
missing teeth were present, the area surrounding them showed
red activation (Fig. 4). In patients without missing teeth, a
relatively large area was activated (Fig. 5).

4. Discussion

Panoramic radiographs allow for observation of the entire oral
andmaxillofacial lesion, while leading to lower radiation expo-
sure than full-mouth periapical radiographs [27]. In pediatric
patients, panoramic radiography during regular dental check-
ups is crucial for identifying various dental anomalies such as
supernumerary teeth, tooth agenesis and odontomas. Although
panoramic radiographs can only represent three-dimensional
structures in a two-dimensional image, recent advances in
AI models for automatic interpretation have overcome this
challenge [28].
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FIGURE 3. Receiver operating characteristic (ROC) curves of 5-fold cross-validation. (a) ROC of the first cross-
validation. (b) ROC of the second cross-validation. (c) ROC of the third cross-validation. (d) ROC of the fourth cross-validation.
(e) ROC of the fifth cross-validation. The area under the ROC curve represents the AUC value. AUC: Area under the curve.
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FIGURE 4. Grad-CAM overlaid images of the experimental group. The color from blue to red means more activation.
Grad-CAM: gradient-weighted class activation mapping.

FIGURE 5. Grad-CAM overlaid images of the control group. The color from blue to red means more activation. Grad-
CAM: gradient-weighted class activation mapping.
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Prior research has demonstrated high accuracy in automat-
ically analyzing the type of implant, location of permanent
tooth loss, and remaining alveolar bone height on panoramic
radiographs of adults using deep learning models [29–31].
However, relatively few studies have investigated deep learn-
ing models for the automatic analysis of panoramic radio-
graphs in pediatric patients. This may be due to the distinct
characteristics of pediatric patients, including the coexistence
of primary and permanent teeth with varying stages of eruption
and image distortion due to the small face size, making it
difficult for AI to learn [7]. To overcome these difficulties,
various attempts have been made to remove unnecessary infor-
mation from panoramic radiographs and set an adequate ROI
[10, 11, 32, 33]. According to Dibeh et al. [34], accurate
segmentation of the ROI significantly impacts the outcomes
of deep learning algorithms. In this study, the ROI was set to a
minimal size that included the teeth and surrounding structures,
which was sufficient for the deep learning program to learn
and analyze the presence of missing teeth. Furthermore, this
ROI image encompassed various information, including dental
caries and alveolar bone resorption. Therefore, the ROI setting
method utilized in this study has the potential to facilitate the
automation of additional information analysis in panoramic
radiographs.
According to Fujuda et al. [35] and Estai et al. [36], setting

a smaller ROI with the necessary information can enhance the
accuracy of results. However, this segmentation preprocessing
is mostly done manually, and few existing studies describe
this process in detail. In this study, the ROI was set by
manual labeling, but the process was elucidated in detail. Since
panoramic radiographs contain a variety of structures and a
vast amount of information, it is inevitable to crop the desired
area before the deep learning training. Therefore, the ROI
cropping criteria of this study can serve as a basis for setting
ROIs for other regions in panoramic radiographs, and further
development can contribute to the automation of ROI setting
in the future.
According to Hwang et al. [14], previous studies utilizing

deep learning used average dataset sizes ranging from 175–
1200. Moreover, using extensive data for deep learning train-
ing is advantageous [13]. In the data used in this study, the
teeth were flipped horizontally and vertically in each quadrant.
However, the information necessary for deep learning training
and validation remains consistent. Therefore, by dividing one
panoramic radiograph into four quadrants, the total dataset size
was increased four-fold.
In this study, the average sensitivity and specificity were

found to be 0.635 and 0.814, respectively (Table 3). The
testing set results of the second cross-validation, which ex-
hibited the highest performance value, were analyzed. First,
in cases where the canines were missing, the deep learning
model classified them as 100% missing. This outcome could
be attributed to the distinct morphological characteristics of
canine teeth compared to those of incisors, premolars and
molars, which likely favored the deep learning training pro-
cess. Subsequently, when the upper first premolar, lower first
premolar, and lower second premolar were missing, they were
classified as missing with probabilities of 84.6%, 80.0% and
77.4%, respectively. According to Heuberer et al. [37], among

patients with missing teeth, the premolar area is most fre-
quently missing among the anterior, premolar, andmolar areas.
In the total data, 46.9% had missing premolars (either the first
or second premolar). Therefore, it can be speculated that the
high accuracy may have been achieved due to the abundant
utilization of radiographs from patients withmissing premolars
in the training data. Similarly, in the entire dataset, 6.4%
exhibited missing molars (either the first or second molar),
and the diagnostic accuracy was consistently below 50%. It
suggests that the cause of this may be attributed to insufficient
training data for missingmolars (Fig. 6a). Themajority of false
positives, accounting for 64.5%, corresponded to permanent
dentition. In the Grad-CAM analysis of these errors, activation
was primarily observed in the region of the third molar or the
inferior region of permanent teeth (Fig. 6b). This suggests
that the deep learning model in this study may have attempted
to detect the successors even in cases of permanent dentition.
Consequently, it is reasonable to conclude that the deep learn-
ing model has limitations in its capacity to distinguish primary
and permanent teeth, as well as in its ability to classify mixed
dentition and permanent dentition.

The average AUC of the deep learning model used in this
study was 0.730. The AUC represents the classification perfor-
mance of the deep learning model; thus, this value implies that
the deep learning model can correctly classify the presence or
absence of teeth with a 73% probability [38]. Comparing these
findings with previous results was difficult as the previous
study involved a pre-processing step for tooth segmentation
prior to evaluating the missing teeth on panoramic images
[22]. Different deep learning models have shown AUC values
ranging from 0.73 to 0.98 in studies evaluating supernumerary
teeth on panoramic radiographs [10, 21]. Thus, the deep
learning model in this study showed comparable performance
to that of the models used in previous studies. Additionally,
Duan et al. [39] reported that an AUC value of 0.9 or higher
could be interpreted as an excellent, 0.8–0.9 as a good, 0.7–
0.8 as a moderate, and 0.6–0.7 as a mild classification ability.
Other studies have used a threshold of 0.7 to assess whether
the AUC value indicates sufficient performance and good
classification ability for deep learning [40–42]. Accordingly,
the deep learning model in this study can be interpreted as
having moderate-to-good distinguishing power.

This study had several limitations. First, panoramic ra-
diographs were divided into four quadrants to evaluate tooth
loss. Although this approach increased the data size for deep
learning training, it required pre-processing work for labeling
the panoramic radiographs. Therefore, the immediate applica-
tion of this deep learning model in clinical practice is limited.
Future research focusing on automating the pre-processing of
ROI proposed in this study could overcome this limitation.
Second, false positives and false negatives were influenced
by differences in the number of the training data for each
tooth and variations between mixed and permanent dentition.
Therefore, in future research, it may be necessary to balance
the training data by accounting for the number of missing
teeth. Furthermore, by categorizing data based on the dental
age, training the deep learningmodel could potentially enhance
diagnostic accuracy.
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FIGURE 6. Examples of the Grad-CAM of false negative and false positive. (a) Despite the missing of the upper right
second molar (#17, black arrow), it was incorrectly diagnosed as being intact. (b) Misdiagnosis due to the recognition of the
inferior region of permanent teeth. The color from blue to red means more activation. Grad-CAM: gradient-weighted class
activation mapping.

5. Conclusions

In this study, a deep learning network model was developed
to classify the presence of missing teeth in panoramic ra-
diographs, and its performance was evaluated. The newly
defined small-sized ROI proved to be suitable for classifying
the presence of missing teeth using this deep learning model.
This research may serve as a valuable reference for establish-
ing criteria for automated ROI selection in future panoramic
radiograph analysis.
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