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Abstract
At the current technology level, a human examiner’s review must be accompanied to
compensate for the insufficient commercial artificial intelligence (AI) performance. This
study aimed to investigate the effects of the human examiner’s expertise on the efficacy
of AI analysis, including time-saving and error reduction. Eighty-four pretreatment
cephalograms were randomly selected for this study. First, human examiners (one
beginner and two regular examiners) manually detected 15 cephalometric landmarks
and measured the required time. Subsequently, commercial AI services automatically
identified these landmarks. Finally, the human examiners reviewed the AI landmark
determination and adjusted them as needed while measuring the time required for the
review process. Then, the elapsed time was compared statistically. Systematic and
random errors among examiners (human examiners, AI and their combinations) were
assessed using the Bland-Altman analysis. Intraclass correlation coefficients were used
to estimate the inter-examiner reliability. No clinically significant time difference was
observed regardless of AI use. AI measurement error decreased substantially after the
review of the human examiner. From the standpoint of the human examiner, beginners
could obtain better results than manual landmarking. However, the AI review outcomes
of the regular examiner were not as good as those of manual analysis, possibly due to
AI-dependent landmark decisions. The reliability of AI analysis could also be improved
by employing the human examiner’s review. Although the time-saving effect was
not evident, commercial AI cephalometric services are currently recommendable for
beginners.
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1. Introduction

Automatic cephalometric landmark detection has attracted
considerable research attention in dentistry [1]. With
the introduction of artificial intelligence (AI) in this
field in the past few years, the success rate of automated
landmark identification is rapidly increasing [2–9]. Moreover,
commercial AI-supported automatic cephalometric services
have recently been launched. Accordingly, the accuracy and
efficiency of cephalometric analysis are expected to improve
considerably [1].
The primary clinical efficacy expected from automatic land-

mark identification is a decrease in the landmarking error
and the required time by eliminating human examiner in-
tervention [10, 11]. However, as indicated in our previous
study (Part 1), which assessed the performance of commercial
AI cephalometric services, an inspection of each landmark
position by a human examiner was an indispensable requisite
for commercial AI services. In other words, a human examiner

could not be excluded from these commercial AI-supported
cephalometric analyses for now.
The question is what benefits can be gained from AI-

supported cephalometric analysis when accompanied by a
human examiner’s review. Whether time-saving and error-
reduction effects can be expected even if less-experienced
examiners, such as beginners in pediatric dentistry and
orthodontic fields, review the AI results is unclear. Thus
far, the mainstream of AI research has been to evaluate the
performance of AI architectures [2–9]. The effect of a human
examiner’s expertise on the final results of the AI analysis
has not yet been investigated. The effectiveness of these AI
services under practical usage conditions is clinically relevant
for clinicians because several commercial AI cephalometric
services have already been released to the market with an
increasing number of users.
This study aimed to evaluate the clinical efficacy of a com-

mercial AI cephalometric analysis followed by a human ex-
aminer’s inspection. The time-saving effect, agreement and
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reliability of AI-assisted cephalometric analysis will be inves-
tigated among experienced and inexperienced human examin-
ers, AI and combinations thereof.

2. Materials and methods

Eighty-four pretreatment cephalogram images were randomly
selected from patients who visited the Department of Or-
thodontics and Pediatric Dentistry of Kyungpook National
University Dental Hospital between 2012 and 2021 for the
treatment of malocclusion. Patients with a history of orthodon-
tic treatment or craniofacial malformations such as cleft lip and
palate were excluded. All cephalogram images, taken using a
CX-90SP (an X-ray scanner, Asahi, Kyoto, Japan), were in
JPG format with a resolution of 150 DPI and a gray level of
24. Table 1 presents the characteristics of the sample.

TABLE 1. Sample characteristics.
Characteristics N Mean SD
Age (yr) 84 11.13 3.52
Sex

Male 46 - -
Female 38 - -

AP skeletal (ANB angle)
Class I 35 1.76 1.11
Class II 24 5.83 1.38
Class III 25 −1.42 1.42

Vertical skeletal (SN-MP angle)
Normal angle 53 33.18 2.55
High angle 27 40.42 2.94
Low angle 4 22.48 4.39

N, the number of samples; SD, standard deviation; Class
I, 0 < ANB < 4; Class II, 4 ≤ ANB; Class III, ANB ≤ 0;
Normal angle, 27 < SN-MP < 37; High angle, 37 ≤ SN-
MP; Low angle, SN-MP ≤ 27.

Three human examiners participated in this study. Ex-
perts 1 (HKN) and 2 (SRB) are board-certified orthodontists
with more than seven and five years of clinical experience,
respectively, belonging to regular examiners. The beginner
examiner (JSL) is a board-certified pediatric dentist with min-
imal expertise in tracing cephalograms, i.e., less than 40 cases
over the seven years of his career. Thirteen commonly used
cephalometric variables were evaluated after identifying 15
dental and skeletal landmarks (Tables 2 and 3).
The manual landmarking process was as follows: First,

human examiners discussed and agreed upon the landmark
definition using three cephalogram images that were not in-
cluded in the study samples. Then, the human examiners
initiated manual landmark identification using computer soft-
ware (6.3 Sequential Tracing Mode, AudaxCeph, Ljubljana,
Slovenia). Detection was performed independently, without
any communication between examiners. There was no time
limit for landmarking, and re-examining landmark positions
was always possible until the examiners were satisfied. Expert
2 and the beginner examiner measured the time required from
the first landmark identification to the final approval of the
overall landmark position under this condition. Repeated
measurements were performed by expert 1 after one month.

TABLE 2. Cephalometric landmark definitions.
Landmarks Definition
S The center point of the sella turcica.
Na The uppermost point of the frontonasal suture.
Po The uppermost point of the external acoustic

meatus.
Or The lowermost point of the bony orbit.
Ar The intersection of the cranial base and the

posterior margin of the neck of condyles.
A-point The most concave point of the curve between

the anterior nasal spine and the most
anterior-inferior point of the upper alveolar

bone.
B-point The most concave point of the curve between

the most anterior-superior point of the lower
alveolar bone and the most anterior point of

the bony contour of the chin.
Go The most posterior and inferior point of the

angle of the mandible.
Me The most inferior point of the bony contour of

the chin.
Incisor point The midpoint between U1 and L1 tips.
Molar point The point where the upper and lower first

molars occlude. The landmark was
determined by the midpoint between the

mesiobuccal cusp tips of the upper and lower
first molars.

U1 tip The incisal tip of the upper incisors.
U1 apex The root apex point of the upper incisors.
L1 tip The incisal tip of the lower incisors.
L1 apex The root apex point of the lower incisors.
S, sella; Na, nasion; Po, porion; Or, orbitale; Ar, articulare;
Go, gonion; Me, menton; U1, upper central incisor; L1, lower
central incisor.

TABLE 3. Measures of intra-examiner reliability and
method errors.

Variables Expert 1
Coefficient 95% CI Dahlberg

SNA 0.95 (0.93, 0.97) 0.79
SNB 0.97 (0.96, 0.98) 0.68
ANB 0.98 (0.97, 0.99) 0.46
Wits 0.98 (0.97, 0.99) 0.71
SN-MP 0.98 (0.97, 0.99) 0.77
FMA 0.97 (0.95, 0.98) 0.84
Bjork-Jarabak Sum 0.98 (0.97, 0.99) 0.77
SN-U1 0.98 (0.97, 0.99) 1.22
FH-U1 0.98 (0.97, 0.99) 1.22
IMPA 0.97 (0.96, 0.98) 1.27
U1L1 0.98 (0.97, 0.99) 1.68
SN-OcP 0.95 (0.93, 0.97) 0.92
FH-OcP 0.94 (0.91, 0.96) 0.98
ICC, intraclass correlation coefficient; CI, 95% confidence
interval of ICC; Sig, significance; Dahlberg, method errors
obtained by Dahlberg’s formula (

√∑
d2/2n).
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Commercial AI cephalometric service (WebCeph, 1.0.0,
Assemblecircle, Gyeonggi-do, Korea) was used to obtain AI
landmarking data. WebCeph automatically detected the land-
mark position and performed cephalometric analysis immedi-
ately after uploading the study samples. The landmark data
from WebCeph were saved and delivered to expert 2 and the
beginner examiner. Each examiner independently reviewed
the positions of the 15 landmarks involved in this study. The
review process was initiated 1 month after the previous manual
detection. As in manual landmarking, each landmark position
was examined and adjusted as necessary without any time
limit. The examiners also measured the time required for the
review process from the first landmark examination to the final
approval.
The overall study design is shown in Fig. 1.
All statistical analyses were performed using the language

R (4.3.1, R Foundation for Statistical Computing, Vienna,
Austria) with a significance level of 0.05.
The intra-examiner reliability between the repeated mea-

surements of expert 1 was evaluated with intraclass correlation
coefficients (ICCs) using two-way mixed-effects, single rater
and absolute agreement models [12]. The Dahlberg formula
estimated method errors between repeated trials.
The time required for landmark identification was compared

among expert 2, beginner, WebCeph and expert 2 and Web-
Ceph and beginner. A one-way repeated-measures analysis
of variance was used for comparison. Subsequent post hoc

pairwise comparisons were performed using the Bonferroni
correction.
The Bland-Altman analysis was used to evaluate measure-

ment errors among examiners. Expert 1’s data were set as the
reference. Then, according to the Bland-Altman protocol, data
from other examiners were analyzed relative to this reference
[13]. Specifically, the mean and difference between expert
1 and other examiners were calculated. Data normality was
confirmed using the Shapiro-Wilk test, and the Bland-Altman
statistics was evaluated. The bias, which is themean difference
between examiners, measures the systematic error. On the
contrary, the limits of agreement (LoA) are the upper and lower
bounds containing 95% of the measurement errors between
examiners [14]. As an index of pure random error size between
examiners, the maximum random error (MRE) was defined
as the half-width of the upper and lower LoA, eliminating
the effect of bias included in LoA [13, 15]. To help visually
understand the magnitudes of systematic and random errors,
the Bland-Altman plots were drawn.
The number of variables that satisfied the agreement criteria

was counted for each examiner. We applied the same criteria
for agreement determination based on the rationale described
in our previous study (Part 1).
The inter-examiner reliability between expert 1 and other ex-

aminers was estimated with ICCs using the two-way random-
effects and single-rater models [12]. We calculated both abso-
lute agreement and consistency ICCs to assess the impact of

FIGURE 1. Study flow chart. AI, artificial intelligence.
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systematic errors.

3. Results

The mean intra-examiner reliability of expert 1 was 0.97, and
the mean method errors were 0.95◦ and 0.73 mm for angular
and linear measurements, respectively (Table 3). Therefore,
we took the mean of the first and second measurements and
used these average values in the subsequent analysis.
Table 4 presents the time required for landmarking. The

results of Mauchly’s test confirmed that the sphericity assump-
tion was violated (p< 0.001). Hence, we report the test results
adjusted by Greenhouse and Geisser (ϵ = 0.736). According to
the analysis, at least one measurement time was significantly
different: F (2.208, 218.592) = 229, p < 0.001. The subse-
quent post-hoc test showed significant differences in all com-
parison pairs (p < 0.001). Specifically, when comparing the
required time between examiners according to the landmarking
methods, expert 2 took significantly longer than the beginner
for both manual landmarking and AI review. However, no
consistency was observed when comparing each examiner’s
required time between the landmarking methods. Expert 2
took approximately 30 s more for AI review than manual
landmarking, whereas the beginner showed approximately 10
s shorter time in the same case.

TABLE 4. The post hoc pairwise comparison of the
required time.

Expert 2 Beginner Mean dif-
ference

p-
value

Manual
landmarking

75.27 ±
20.39

59.71 ±
20.62

15.56 <0.001

AI review 107.80
± 27.25

47.54 ±
10.72

60.26 <0.001

Mean differ-
ence

−32.53 12.17 - -

p-value <0.001 <0.001 - -
The values are mean± standard deviation in the unit of sec-
onds; p-values were adjusted with Bonferroni correction;
AI, artificial intelligence.

The descriptive and Bland-Altman statistics of cephalomet-
ric variables measured by each examiner are presented in
Tables 5 and 6. Statistically significant biases with confidence
intervals not containing zero were common among examiners;
however, their magnitudes were generally small. Exception-
ally, the sella-nasion plane (SN plane)-associated variables
(SNA, SNB, SN-MP, Björk-Jarabak sum, SN-U1 and SN-OcP)
measured by the beginner showed relatively large systematic
errors.
The magnitudes of random errors showed a clear pattern

among examiners: expert 2 < WebCeph and expert 2 ≤
WebCeph and beginner <WebCeph < beginner (Fig. 2). The
MRE of the beginner was 2.19 times larger than that of expert
2 on average. Similarly, WebCeph, WebCeph and beginner,
and WebCeph and expert 2 showed 1.78, 1.35 and 1.18 times
greater MREs than expert 2 (Table 6 and Fig. 2). As an

illustrative example, the Bland-Altman plots of the SN-MP are
shown in Fig. 3.
In this study, most of the examiners did not meet the agree-

ment criteria (Table 7). Only WebCeph and expert 2 could
satisfy the standard over three variables (Wits, IMPA and
U1L1).
The mean inter-examiner reliability between expert 1 and

expert 2 was 0.95 for absolute agreement and 0.96 for consis-
tency (Table 8). Similar but slightly low ICC values were ob-
served in WebCeph and expert 2 and WebCeph and beginner,
i.e., 0.91–0.94, corresponding to excellent ICCs. By contrast,
Webceph showed relatively compromised ICCs between 0.84
and 0.86. Finally, the beginner revealed the lowest ICC
values of 0.78–0.82, with a large difference between absolute
agreement and consistency.

4. Discussion

Time-saving may be one of the major clinical benefits that
clinicians expect from using AI-supported cephalometric anal-
ysis [10, 11]. However, contrary to usual expectations, the
statistical comparison of the elapsed time showed no consistent
trend among examiners, i.e., that the beginner could save
approximately 10 s on average, whereas expert 2 spent 30
s longer (Table 4). This is probably because the landmark
position review process may negate the time saved by AI and
can takemore in some cases. In addition, regardless of whether
it increased or decreased, the time difference between the mea-
surement methods was <1 min, which was clinically insignif-
icant. Therefore, contrary to the usual expectations, obtaining
a clinically relevant time-saving effect from AI cephalometric
analysis may be challenging as long as the examination by a
human examiner is essential.
The overall systematic error was not clinically significant.

However, the SN plane-associated variables measured by the
beginner showed substantial systematic errors (Table 6). This
is an example of a subjective error that has long been reported
as a major error source for landmark detection [8, 10, 16].
Interestingly, this systematic error disappeared in WebCeph
and beginner (Table 6, Fig. 3), supporting that subjective error
reduction is achievable even after a human review.
In Part 1, we revealed that the random error size ofWebCeph

was clinically unacceptable. A human examiner’s review has
been suggested as a countermeasure against the unreliable
performance of AI [17, 18]. The study results showed that
the MRE of WebCeph decreased when reviewed by a human
examiner, regardless of their expertise level (Table 6, Fig. 2).
These results may justify AI review by a human examiner as a
method compensating for AI’s performance.
However, these advantages of AI review were not equally

applicable to examiners with different expertise levels. Com-
pared with manual landmarking, the average MRE decreased
by 2.63 for beginners with AI aid, whereas expert 2 conversely
increased by 0.57, albeit slightly (Table 6, Fig. 2). The number
of variables meeting the agreement condition also illustrated
the same points. The performance of expert 2 became worse
with the help of Webceph (Table 7).
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TABLE 5. Descriptive statistics.

Expert 1 Expert 2 Beginner WebCeph WebCeph_Beginner WebCeph_Expert2

SNA 80.60 ± 3.62 80.08 ± 3.45 82.85 ± 5.10 81.92 ± 3.09 81.33 ± 3.38 80.42 ± 3.42

SNB 78.52 ± 4.16 78.29 ± 4.05 80.88 ± 5.48 78.76 ± 3.57 78.54 ± 3.90 77.78 ± 3.99

ANB 2.06 ± 3.06 1.79 ± 3.13 1.97 ± 3.50 3.16 ± 3.17 2.79 ± 3.09 2.64 ± 3.10

Wits −2.28 ± 5.11 −2.99 ± 5.06 −3.28 ± 5.31 −0.88 ± 5.03 −1.30 ± 5.56 −1.40 ± 5.26

SN-MP 35.12 ± 5.24 35.64 ± 5.13 32.86 ± 5.70 34.29 ± 4.89 35.46 ± 5.09 36.03 ± 5.11

FMA 26.43 ± 4.77 25.38 ± 4.56 27.60 ± 4.91 26.48 ± 4.67 26.48 ± 4.87 25.89 ± 4.76

Bjork-Jarabak
Sum

395.12 ± 5.23 395.64 ± 5.13 392.86 ± 5.70 394.29 ± 4.89 395.46 ± 5.09 396.03 ± 5.11

SN-U1 106.86 ± 9.16 106.38 ± 8.86 111.47 ± 11.41 105.14 ± 8.48 105.65 ± 8.71 105.34 ± 9.22

FH-U1 115.55 ± 8.73 116.64 ± 8.76 116.69 ± 10.31 112.95 ± 8.15 114.63 ± 8.47 115.47 ± 9.05

IMPA 92.98 ± 7.82 92.31 ± 7.80 94.33 ± 8.18 92.16 ± 6.58 90.40 ± 6.95 90.67 ± 7.66

U1L1 125.05 ± 13.01 125.68 ± 13.21 121.38 ± 13.71 128.41 ± 11.13 128.50 ± 12.31 127.96 ± 13.36

SN-OcP 17.81 ± 4.20 19.00 ± 4.01 16.38 ± 5.53 16.99 ± 3.92 17.18 ± 4.22 18.41 ± 3.99

FH-OcP 9.12 ± 3.99 8.74 ± 3.74 11.16 ± 4.97 9.18 ± 3.57 8.20 ± 4.10 8.28 ± 3.81

The values are mean ± standard deviation.
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TABLE 6. Bland-Altman statistics.

Expert 1-Expert 2 Expert 1-Beginner Expert 1-WebCeph Expert 1-WebCeph_Expert2 Expert 1-WebCeph_Beginner

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI

SNA

Bias 0.52 (0.27, 0.76) −2.26 (−3.06, −1.45) −1.33 (−1.92, −0.73) 0.18 (−0.16, 0.51) −0.73 (−1.05, −0.41)

Upper LoA 2.74 (2.32, 3.16) 5.02 (3.64, 6.40) 4.06 (3.04, 5.08) 3.18 (2.61, 3.75) 2.19 (1.64, 2.75)

Lower LoA −1.71 (−2.13, −1.28) −9.54 (−10.92, −8.15) −6.71 (−7.73, −5.69) −2.83 (−3.40, −2.26) −3.65 (−4.21, −3.10)

MRE 2.22 7.28 5.39 3.00 2.92

SNB

Bias 0.23 (0.04, 0.43) −2.36 (−3.12, −1.61) −0.24 (−0.71, 0.23) 0.74 (0.48, 1.01) −0.02 (−0.29, −0.25)

Upper LoA 2.00 (1.67, 2.34) 4.47 (3.17, 5.77) 4.00 (3.20, 4.81) 3.13 (2.68, 3.59) 2.38 (1.93, 2.84)

Lower LoA −1.54 (−1.87, −1.20) −9.20 (−10.49, −7.90) −4.48 (−5.28, −3.67) −1.65 (−2.10, −1.19) −2.42 (−2.88, −1.96)

MRE 1.77 6.83 4.24 2.39 2.40

ANB

Bias 0.27 (0.13, 0.42) 0.09 (−0.24, 0.42) −1.10 (−1.42, −0.78) −0.58 (−0.78, −0.38) −0.72 (−0.94, 0.50)

Upper LoA 1.59 (1.34, 1.84) 3.08 (2.51, 3.64) 1.81 (1.26, 2.36) 1.21 (0.87, 1.55) 1.25 (0.87, 1.62)

Lower LoA −1.05 (−1.30, −0.80) −2.89 (−3.45, −2.32) −4.01 (−4.56, −3.46) −2.37 (−2.71, −2.03) −2.69 (−3.07, −2.32)

MRE 1.32 2.98 2.91 1.79 1.97

Wits

Bias 0.71 (0.40, 1.02) 1.00 (0.58, 1.42) −1.40 (−1.87, −0.94) −0.89 (−1.20, −0.57) −0.99 (−1.42, 0.56)

Upper LoA 3.52 (2.98, 4.05) 4.77 (4.05, 5.49) 2.78 (1.98, 3.57) 1.96 (1.42, 2.50) 2.90 (2.16, 3.64)

Lower LoA −2.10 (−2.63, −1.57) −2.77 (−3.49, −2.06) −5.58 (−6.37, −4.79) −3.73 (−4.27, −3.19) −4.87 (−5.61, −4.14)

MRE 2.81 3.77 4.18 2.85 3.89

SN-MP

Bias −0.52 (−0.73, −0.31) 2.26 (1.49, 3.03) 0.83 (0.33, 1.32) −0.91 (−1.22, −0.60) −0.34 (−0.72, 0.04)

Upper LoA 1.38 (1.02, 1.74) 9.20 (7.88, 10.52) 5.32 (4.47, 6.17) 1.88 (1.35, 2.41) 3.11 (2.45, 3.76)

Lower LoA −2.42 (−2.78, −2.06) −4.69 (−6.01, −3.37) −3.67 (−4.52, −2.81) −3.70 (−4.23, −3.17) −3.79 (−4.44, −3.13)

MRE 1.90 6.95 4.49 2.79 3.45
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Expert 1-Expert 2 Expert 1-Beginner Expert 1-WebCeph Expert 1-WebCeph_Expert2 Expert 1-WebCeph_Beginner

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI

FMA

Bias 1.05 (0.81, 1.30) −1.17 (−1.73, −0.60) −0.05 (−0.38, 0.29) 0.54 (0.20, 0.88) −0.05 (−0.41, −0.31)

Upper LoA 3.27 (2.84, 3.69) 3.96 (2.98, 4.93) 2.99 (2.41, 3.57) 3.60 (3.01, 4.18) 3.22 (2.60, 3.84)

Lower LoA −1.16 (−1.58, −0.74) −6.29 (−7.26, −5.31) −3.08 (−3.66, −2.50) −2.52 (−3.10, −1.94) −3.31 (−3.93, −2.69)

MRE 2.21 5.12 3.03 3.06 3.26

Sum

Bias −0.52 (−0.73, −0.31) 2.26 (1.49, 3.03) 0.83 (0.33, 1.33) −0.91 (−1.22, −0.60) −0.34 (−0.72, 0.04)

Upper LoA 1.38 (1.02, 1.74) 9.21 (7.89, 10.53) 5.32 (4.46, 6.17) 1.88 (1.35, 2.41) 3.11 (2.46, 3.76)

Lower LoA −2.42 (−2.78, −2.06) −4.69 (−6.01, −3.37) −3.66 (−4.51, −2.81) −3.70 (−4.23, −3.17) −3.78 (−4.44, −3.13)

MRE 1.90 6.95 4.49 2.79 3.45

SN-U1

Bias 0.48 (0.01, 0.95) −4.61 (−5.81, −3.40) 1.73 (0.69, 2.76) 1.52 (0.86, 2.19) 1.22 (0.49, −1.94)

Upper LoA 4.73 (3.92, 5.54) 6.26 (4.20, 8.32) 11.06 (9.29, 12.84) 7.54 (6.40, 8.69) 7.76 (6.52, 9.01)

Lower LoA −3.76 (−4.57, −2.96) −15.47 (−17.53, −13.41) −7.61 (−9.38, −5.84) −4.50 (−5.64, −3.35) −5.33 (−6.58, −4.09)

MRE 4.25 10.87 9.34 6.02 6.55

FH-U1

Bias −1.09 (−1.64, −0.54) −1.14 (−2.19, −0.10) 2.60 (1.67, 3.53) 0.08 (−0.60, 0.76) 0.93 (0.23, −1.62)

Upper LoA 3.90 (2.95, 4.85) 8.31 (6.52, 10.11) 11.00 (9.40, 12.59) 6.23 (5.06, 7.40) 7.20 (6.01, 8.39)

Lower LoA −6.08 (−7.02, −5.13) −10.59 (−12.39, −8.80) −5.79 (−7.39, −4.20) −6.07 (−7.24, −4.90) −5.34 (−6.54, −4.15)

MRE 4.99 9.45 8.39 6.15 6.27
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TABLE 6. Continued.

Expert 1-Expert 2 Expert 1-Beginner Expert 1-WebCeph Expert 1-WebCeph_Expert2 Expert 1-WebCeph_Beginner

Value 95% CI Value 95% CI Value 95% CI Value 95% CI Value 95% CI

IMPA

Bias 0.67 (0.17, 1.18) −1.35 (−2.15, −0.56) 0.81 (−0.02, 1.64) 2.31 (1.80, 2.81) 2.58 (1.92, −3.24)

Upper LoA 5.23 (4.37, 6.10) 5.81 (4.45, 7.18) 8.30 (6.88, 9.72) 6.85 (5.99, 7.71) 8.57 (7.43, 9.71)

Lower LoA −3.89 (−4.76, −3.03) −8.52 (−9.88, −7.16) −6.68 (−8.10, −5.26) −2.24 (−3.10, −1.38) −3.41 (−4.55, −2.27)

MRE 4.56 7.17 7.49 4.54 5.99

U1L1

Bias −0.62 (−1.29, 0.04) 3.67 (2.63, 4.72) −3.36 (−4.37, −2.34) −2.91 (−3.54, −2.29) −3.45 (−4.32, 2.58)

Upper LoA 5.41 (4.26, 6.55) 13.11 (11.32, 14.90) 5.79 (4.06, 7.53) 2.73 (1.66, 3.80) 4.42 (2.93, 5.92)

Lower LoA −6.66 (−7.80, −5.51) −5.77 (−7.56, −3.97) −12.51 (−14.25, −10.77) −8.55 (−9.63, −7.48) −11.32 (−12.82, −9.82)

MRE 6.03 9.44 9.15 5.64 7.87

SN-OcP

Bias −1.19 (−1.57, −0.80) 1.43 (0.65, 2.21) 0.82 (0.18, 1.46) −0.60 (−1.01, −0.19) 0.64 (0.21, 1.06)

Upper LoA 2.27 (1.62, 2.93) 8.45 (7.11, 9.78) 6.60 (5.50, 7.69) 3.13 (2.42, 3.83) 4.44 (3.72, 5.17)

Lower LoA −4.64 (−5.30, −3.99) −5.59 (−6.92, −4.25) −4.95 (−6.05, −3.85) −4.33 (−5.03, −3.62) −3.17 (−3.89, −2.45)

MRE 3.46 7.02 5.77 3.73 3.81

FH-OcP

Bias 0.38 (−0.04, 0.80) −2.03 (−2.70, −1.37) −0.05 (−0.55, 0.44) 0.84 (0.41, 1.28) 0.92 (0.50, −1.35)

Upper LoA 4.17 (3.45, 4.89) 3.96 (2.82, 5.09) 4.43 (3.58, 5.28) 4.76 (4.01, 5.50) 4.79 (4.05, 5.52)

Lower LoA −3.40 (−4.12, −2.68) −8.02 (−9.16, −6.89) −4.54 (−5.39, −3.69) −3.07 (−3.81, −2.33) −2.94 (−3.67, −2.20)

MRE 3.78 5.99 4.48 3.91 3.86

Upper CI, upper limit of 95% confidence interval; lower CI, lower limit of 95% confidence interval; LoA, limit of agreement; MRE, maximum random error calculated by (Upper LoA
− Lower LoA)/2.
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FIGURE 2. Bar graphs of the magnitude of MREs. The horizontal solid line represents the acceptable clinical limit for
random error.

TABLE 7. The number of variables per each examiner
meeting the interchangeability criterion.

Examiner N Variables

Beginner 0 -

WebCeph 0 -

WebCeph & Expert 2 3 Wits, IMPA, U1L1

WebCeph & Beginner 0 -

The ICC values could confirm the aforementioned study
findings again. The inter-examiner reliability was calculated
to evaluate the effect of the reduced measurement error on
discriminating individuals in the study group (Table 8) [12]. As
in the previous study, both absolute agreement and consistency
ICC were measured. No considerable difference was found
between the two ICCs, which further supported the previ-
ous decision that systematic error was not clinically relevant.
Moreover, the beginner’s reliability could be improved to a
level close to that of expert 2 with the help of AI. However,
expert 2 showed a slight decrease in reliability when assisted by
AI. These conflicting reliability results between the beginner
and expert 2 may imply that AI-aided cephalometric analysis
cannot be practical for all human examiners.

Overall, adding a human review to AI could significantly
reduce measurement errors, which led to an apparent im-
provement in agreement and reliability compared with using
AI alone in cephalometric analysis. However, in terms of
superiority to manual landmarking, conflicting results were
noted according to the examiner’s expertise. When using
AI together, less-experienced examiners could obtain better
results than manual alone, whereas regular examiners obtained
slightly worse results than manual landmarking. Considering
that the time-saving effect is not evident when using AI, AI-
supported commercial cephalometric analysis may be more
recommendable for less-experienced examiners such as gen-
eral practitioners or a beginner in the pediatric dentistry or

orthodontic field.
The reason for these conflicting results is unclear. As one

hypothesis, expert 2 and the beginner might have made AI-
dependent decisions during the landmark review. WebCeph’s
performance is approximately halfway between the beginner
and expert 2 (Fig. 2). Thus, WebCeph’s landmarking may have
suggested a valuable guide for the beginner, whereas it may
have hindered expert 2. For accurate verification, analysis at
the landmark coordinate level may be required; however, this
goes beyond the scope of this study. Further research may be
needed.
As another limitation, the number of examiners participat-

ing was small due to its pilot nature. Consequently, vari-
ous examiner factors may have affected the study results. If
a sufficient number of qualified examiners had participated,
these examiner-origin biases would have been controlled. The
reference positions of the landmarks could have also set closer
to the ground truth. Further studies with more examiners may
be needed.

5. Conclusions

In this study, the clinical effectiveness of commercially avail-
able AI-supported cephalometric services was evaluated un-
der the assumption of a mandatory human examiner review.
Within the limitations of this study, the following conclusions
were drawn:
1. Contrary to expectations, the time-saving effect was not

evident when using AI services together with an examiner’s
review.
2. AI measurement errors generally decreased when re-

viewed by a human examiner. However, the actual bene-
fits were limited to beginners. The regular examiner’s error
slightly increased more than manual landmarking when using
AI.
3. Overall, commercial AI-supported cephalometric ser-

vices are recommendable as an aid for less-experienced exam-
iners or clinicians.



139

FIGURE 3. Bland-Altman plots for SN-MP. In each graph, the x-axis denotes the average of two examiners’ measurement
outcomes, while the y-axis is the difference between the examiners. Green dotted lines represent the bias with a 95% confidence
interval. Blue dotted lines stand for the upper and lower limit of agreement with a 95% confidence interval. (A) between expert 1
and expert 2; (B) between expert 1 and beginner; (C) between expert 1 and Webceph; (D) between expert 1 and Webceph which
was revised by expert2; (E) between expert 1 and WebCeph which was revised by beginner. CI, 95% confidence interval; LoA,
limit of agreement.

TABLE 8. Inter-examiner reliability.
Examiner Variables Absolute Agreement Consistency

Coefficient 95% CI Coefficient 95% CI
Expert 1-Expert 2

SNA 0.94 (0.88, 0.97) 0.95 (0.92, 0.97)
SNB 0.97 (0.96, 0.98) 0.98 (0.96, 0.98)
ANB 0.97 (0.95, 0.98) 0.98 (0.96, 0.98)
Wits 0.95 (0.90, 0.97) 0.96 (0.94, 0.97)
SN-MP 0.98 (0.95, 0.99) 0.98 (0.97, 0.99)
FMA 0.95 (0.71, 0.98) 0.97 (0.96, 0.98)
Bjork-Jarabak Sum 0.98 (0.95, 0.99) 0.98 (0.97, 0.99)
SN-U1 0.97 (0.95, 0.98) 0.97 (0.96, 0.98)
FH-U1 0.95 (0.91, 0.97) 0.96 (0.94, 0.97)
IMPA 0.95 (0.92, 0.97) 0.96 (0.93, 0.97)
U1L1 0.97 (0.96, 0.98) 0.97 (0.96, 0.98)
SN-OcP 0.87 (0.67, 0.94) 0.91 (0.86, 0.94)
FH-OcP 0.87 (0.81, 0.92) 0.88 (0.81, 0.92)
Mean 0.95 0.96

Expert 1-Beginner
SNA 0.57 (0.28, 0.74) 0.65 (0.50, 0.76)
SNB 0.67 (0.34, 0.82) 0.74 (0.63, 0.83)
ANB 0.89 (0.84, 0.93) 0.89 (0.84, 0.93)
Wits 0.92 (0.83, 0.95) 0.93 (0.90, 0.96)
SN-MP 0.73 (0.45, 0.85) 0.79 (0.69, 0.86)
FMA 0.83 (0.71, 0.90) 0.85 (0.78, 0.90)
Bjork-Jarabak Sum 0.73 (0.45, 0.85) 0.79 (0.69, 0.86)
SN-U1 0.78 (0.37, 0.90) 0.86 (0.79, 0.90)
FH-U1 0.87 (0.80, 0.91) 0.87 (0.81, 0.92)
IMPA 0.88 (0.81, 0.93) 0.90 (0.84, 0.93)
U1L1 0.90 (0.68, 0.96) 0.94 (0.90, 0.96)
SN-OcP 0.71 (0.55, 0.81) 0.73 (0.62, 0.82)
FH-OcP 0.70 (0.39, 0.84) 0.77 (0.67, 0.84)
Mean 0.78 0.82
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TABLE 8. Continued.
Examiner Variables Absolute Agreement Consistency

Coefficient 95% CI Coefficient 95% CI
Expert 1-Webceph

SNA 0.62 (0.41, 0.76) 0.67 (0.53, 0.77)
SNB 0.84 (0.77, 0.90) 0.84 (0.77, 0.90)
ANB 0.84 (0.54, 0.92) 0.89 (0.83, 0.92)
Wits 0.88 (0.69, 0.94) 0.91 (0.87, 0.94)
SN-MP 0.89 (0.82, 0.93) 0.90 (0.85, 0.93)
FMA 0.95 (0.92, 0.97) 0.95 (0.92, 0.97)
Bjork-Jarabak Sum 0.89 (0.82, 0.93) 0.90 (0.85, 0.93)
SN-U1 0.84 (0.74, 0.90) 0.85 (0.78, 0.90)
FH-U1 0.83 (0.63, 0.91) 0.87 (0.81, 0.91)
IMPA 0.86 (0.79, 0.90) 0.86 (0.79, 0.91)
U1L1 0.89 (0.68, 0.95) 0.93 (0.89, 0.95)
SN-OcP 0.72 (0.60, 0.81) 0.74 (0.62, 0.82)
FH-OcP 0.82 (0.73, 0.88) 0.82 (0.73, 0.88)
Mean 0.84 0.86

Expert 1-Expert 2_Webceph
SNA 0.91 (0.86, 0.94) 0.91 (0.86, 0.94)
SNB 0.94 (0.85, 0.97) 0.96 (0.93, 0.97)
ANB 0.95 (0.84, 0.97) 0.96 (0.93, 0.97)
Wits 0.95 (0.86, 0.97) 0.96 (0.94, 0.97)
SN-MP 0.95 (0.86, 0.98) 0.96 (0.94, 0.98)
FMA 0.94 (0.90, 0.96) 0.95 (0.92, 0.96)
Bjork-Jarabak Sum 0.95 (0.86, 0.98) 0.96 (0.94, 0.98)
SN-U1 0.93 (0.86, 0.96) 0.94 (0.92, 0.96)
FH-U1 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
IMPA 0.92 (0.53, 0.97) 0.96 (0.93, 0.97)
U1L1 0.95 (0.68, 0.98) 0.98 (0.96, 0.98)
SN-OcP 0.88 (0.82, 0.93) 0.89 (0.84, 0.93)
FH-OcP 0.85 (0.74, 0.91) 0.87 (0.81, 0.91)
Mean 0.93 0.94

Expert 1-Beginner_Webceph
SNA 0.89 (0.79, 0.94) 0.91 (0.86, 0.94)
SNB 0.95 (0.93, 0.97) 0.95 (0.93, 0.97)
ANB 0.92 (0.75, 0.96) 0.95 (0.92, 0.96)
Wits 0.92 (0.83, 0.95) 0.93 (0.90, 0.95)
SN-MP 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
FMA 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
Bjork-Jarabak Sum 0.94 (0.91, 0.96) 0.94 (0.91, 0.96)
SN-U1 0.92 (0.87, 0.95) 0.93 (0.89, 0.95)
FH-U1 0.93 (0.88, 0.95) 0.93 (0.90, 0.95)
IMPA 0.86 (0.52, 0.94) 0.91 (0.87, 0.94)
U1L1 0.92 (0.65, 0.97) 0.95 (0.92, 0.97)
SN-OcP 0.88 (0.82, 0.93) 0.89 (0.84, 0.93)
FH-OcP 0.86 (0.75, 0.92) 0.88 (0.82, 0.92)
Mean 0.91 0.93

ICC, intraclass correlation coefficient; CI, 95% confidence interval of ICC; All variables showed statistical significance
with p-values less than 0.001.
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ABBREVIATIONS

AI, artificial intelligence; ICC, intraclass correlation coeffi-
cient; LoA, limit of agreement; MRE, the maximum random
error.
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