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Abstract
Objective: Early childhood caries (ECC) negatively affects children’s growth due
to its close relation to an imbalance of the oral microbiota. This study aimed to
evaluate the distribution of the oral microbiota in children with ECC and healthy
individuals. Methods: The oral microbiota of 20 children with dental caries from
both carious teeth (CC cohort) and healthy teeth (CH cohort), and the oral microbiota
of 20 healthy control children (HH cohort) were subjected to 16S rDNA sequencing.
Results: The results revealed significant differences between the microbial structure
of the CC and CH cohorts of every child with ECC. The most common microbes
were Streptococcus, Neisseria, Leptotrichia, Lautropia and Haemophilus. Specifically,
the CC cohort contained Lactobacillus, Veillonella, and Prevotella 7, the CH cohort
contained Actinomyces, Bifidobacterium and Abiotrophia, and the HH cohort mainly
contained Neisseria, Leptotrichia, Porphyromonas and Gemella. Lastly, we established
a random forest model consisting of 10 genera (Prevotella 7, Actinobacillus, etc.)
which demonstrated promising clinical diagnostic ability (area under the curve (AUC)
= 89.8%). These findings indicate that oral microbiota can potentially be used as
therapeutic targets or diagnostic markers for the early prediction and prevention of caries
in children.
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1. Introduction

Dental caries is a chronic progressive disease mainly caused
by bacteria and is the most prevalent oral disease in humans
[1]. The prevalence of early childhood caries (ECC) is approx-
imately 530million, according to the world health organization
(WHO) report [2]. ECC is defined as the presence of one or
more decayed, missing or filled tooth surfaces in any primary
tooth in a child under 6 years old, with irreversible damage to
the teeth. Once started, the child usually suffers from a higher
risk of new lesions or even tooth loss over their entire lifespan
[3].
The oral microbiota is the second most complex community

and is important for human health [4, 5]. Some studies revealed
that oral microbiota is associated with several oral diseases [6,
7] and suggested that it could be regarded as a biomarker to
predict certain diseases [8, 9]. These findings indicate that the
analysis of the oral microbiota might be advantageous in future
clinical diagnosis of diseases.
Although previous studies explored the oral microbiota

characteristics of ECC [10–12], these studies only compared
the oral microbiota between patients with ECC and
healthy individuals. As a result, only the results of past

disease progression could be confirmed and the microbiota
distribution of healthy sites in individuals with ECC remains
uninvestigated. Since there are changes in the oral microbiota
during the transformation of healthy primary teeth into
cavities, it is important to investigate the spatial differences in
the microbiota in the same child with ECC to distinguish the
differences between healthy teeth states.
In this study, to evaluate the distribution of the oral micro-

biota in children with ECC and healthy individuals, the oral
microbiota from carious teeth (CC cohort) and healthy teeth
(CH cohort) in 20 children with dental caries were subjected
to 16S rDNA (16S ribosomal DNA) sequencing. The same
sequencing was also performed on the oral microbiota (HH
cohort) from a control group comprising 20 healthy children.

2. Materials and methods

2.1 Cohort enrollment and volunteer
clinical information
Forty children aged 3–6 years (20 children with ECC and 20
healthy children) were recruited for this study after obtaining
permission and informed consent from their guardians. The
severity of primary caries of ECC subjects was 5–6 according
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TABLE 1. Patients’ characteristics.

Variable Healthy
(n = 20)

ECC
(n = 20) p-value

Boy 10 12
Girl 10 8
Age, mean ± SD (yr) 5.63 ± 1.50 5.11 ± 0.87 0.38
Height, mean ± SD (cm) 106.42 ± 12.89 110.75 ± 10.65 0.17
Weight, mean ± SD (kg) 18.68 ± 7.40 18.56 ± 7.23 0.23
BMI 15.38 ± 0.94 16.31 ± 0.86 0.38
Dmfts, mean ± SD 0 10.35 ± 2.62
Frequency of brushing teeth

≥2 times/day 12 18
≤1 times/day 8 2

Times of eating dessert
≥2 times/week 17 17
≤1 times/week 3 3

The only-child
Yes 8 9
No 12 11

ECC: early childhood caries; SD: standard deviation; BMI: Body Mass Index.

to the International Dental Caries Detection and Assessment
System (ICDAS-II) and the numbers of decayed, missing,
and filled teeth (DMFT) of the subjects were determined by
an experienced dental surgeon [13]. Children with mixed
dentition were excluded from the study group. The inclusion
criteria were as follows: (I) no antibiotics used within 1 month;
(II) no fluoride toothpaste used and fluoride treatment within
1 month; (III) the children had no other diseases except for
caries; and (IV) DMFT ≥6 in children with ECC, and DMFT
= 0 in the healthy controls [14]. The clinical data of the
volunteers are shown in Table 1.

2.2 Sample collection

The subjects were told not to eat or drink 2 h before sample
collection. The plaques were collected from the gap of the first
and second primary molars of healthy controls using dental
excavators (Shanghai Kangqiao Dental Instruments Factory,
China) by a dental surgeon and were assigned to the HH
cohort. For each ECC patient, plaques were collected mainly
from two sites. One site was the gap of the first and second
primary molars (without caries), and the other was from the
cavitated site of carious lesions (the CH and CC cohorts,
respectively). The samples were transferred into a labeled
sterile centrifuge tube (Maisinuo, China) containing 1 mL
sterile phosphate-buffered saline (PBS), then transported to a
laboratory refrigerator at −80◦C for freezing within 2 h since
sampling. The samples were kept on ice during the transfer
process to avoid contamination.

2.3 DNA extraction PCR and Illumina
sequencing
The genomic DNA of dental plaque samples was extracted
using the Fast DNATM Spin Kit for Soil (16560200,
MP, CA, USA) following the manufacturer’s instructions.
Subsequently, the V3–V4 region (forward primer, 5′-
CCTACGGGNGGCWGCAG-3′; reverse primer, 5′-
GGACTACHVGGGTATCTAAT-3′) of the 16S rDNA
gene fragments were amplified [15, 16]. The 50 µL reaction
system contained 25 µL Premix TaqTMplus dye (TaKaRa,
China), 0.5 µL forward primer, 0.5 µL reverse primer, 2
µL DNA template, and 22 µL ddH2O. The amplification
conditions were as follows: 95 ℃ for 5 min; 40 cycles of 95
℃ for 30 s, 52 ℃ for 30 s, 72 ℃ for 30 s, and maintained at
12 ℃ for 10 min.
The PCR products were purified after amplification using

the QIAquick PCR Purification Kit (28106, Qiagen, German-
town, USA), and paired-end sequencing was performed on the
Illumina Miseq platform [17].
After sequencing, Quantitative Insights intoMicrobial Ecol-

ogy 2 (QIIME2, Boulder, CO, USA) was used to analyze the
high-quality sequences.

2.4 Microbial diversity assessment
Microbial diversity, including alpha-diversity and beta-
diversity, was analyzed using QIIME2. Alpha diversity was
evaluated using Shannon and Simpson indices [18]. Beta-
diversity was determined based on Bray-Curtis dissimilarity
and unweighted-UniFrac dissimilarity [19]. Microbial
community clustering was arrayed using the principal
coordinate analysis (PCoA), followed by visualization with
the R (version 3.6.0, Ross Ihaka & Robert Gentleman,
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Oakland, New Zealand) “ggplot” package.

2.5 Linear discriminant analysis effect size
(LEfSe) analysis
TheLEfSe analysis (https://huttenhower.sph.harvard.edu/galaxy/)
was used to identify the taxa and functions of the CC, CH,
and HH cohorts [20]. The Kruskal-Wallis test was applied,
and the p-value was set at 0.05. For taxa differences, the
LDA (linear discriminant analysis) score was set at 3.5. As
a supervised learning method, LDA analysis can distinguish
taxa and functions to the maximum extent [21]. The analysis
was performed using the R “mass” package.

2.6 Classification model construction by
randomforest
The R “random forest” package was used to classify the dif-
ferent cohorts based on the relative abundance at the genus
level, and to identify the potential diagnostic biomarkers [22].
Subsequently, 10-fold cross-validation and 10-time repeats
were used to assess the model’s performance. Lastly, the areas
under curve index (AUC) and receiver operating characteristic
(ROC) curves were analyzed by the “pROC” package, and the
model was visualized with the “ggplot” package.

2.7 Statistical Analysis
Clinical indicators were statistically analyzed using the SPSS
software (version 26.0; International Business Machines
Corporation, Amonk, NY, USA). The non-parametric Mann-
Whitney test was used to test the differences in age, height,
weight, and other indicators of subjects in each cohort. The
R platform (http://www.r-project.org/) was used for statistical
analysis of the sequencing data. The difference in the diversity
of oral microbiota was compared using the function of the
Kruskal-Wallis test and Permutational multivariate analysis of
variance (PERMANOVA) of the R “vegan” package [23]. The
data are presented as mean ± SD for each cohort. Statistical
significance was set at p < 0.05.

3. Results

3.1 The diversity of oral microbiota in caries
and healthy teeth
The V3–V4 regions of the 16S rDNA of the 60 investigated
samples (20 from healthy individuals and 40 from ECC
children) were sequenced. A total of 837,136 high-quality
sequencing reads were obtained, ranging from 2594 to 42,458
sequences, (mean = 13,952 sequences, and median = 10,997
sequences). The Shannon and Simpson indices were used to
characterize the microbial richness and uniformity of the CC,
CH, and HH cohorts. The results of comparative analyses
showed no significant difference among the three groups
(Fig. 1A,B; Kruskal-Wallis test, p > 0.05). The beta-diversity
values based on Bray-Curtis (Fig. 1C) and Unweighted-
UniFrac (Fig. 1D) distance metrics were calculated to reflect
the levels of similarities of composition among these cohorts.
The results showed that the beta-diversity values of the CC
and CH cohorts were similar. The lower value of the HH

cohort (Fig. 1C,D; Kruskal-Wallis test, p < 0.001) indicated
that the community similarity of the HH cohort was more
stable.
To determine the similarity of the microbiota composition

(Fig. 1E) and functional composition (Fig. 1F) in healthy
and carious sites of each child with ECC, beta-diversity was
characterized using the common PCoA based on Bray-Curtis
distance metrics. The two ends of each line represent the
plaque samples of different health statuses of one child with
ECC. The results showed a significant difference in the tax-
onomical and functional composition (PERMANOVA, p =
0.003 and p = 0.001, respectively) between healthy and carious
sites in patients with ECC.

3.2 Shifts of the oral microbiota in children
with ECC and healthy individuals
To understand the species distribution of different healthy
states, the microbiota was analyzed at the phylum and genus
levels. A total of 17 phyla, 26 classes, 51 orders, 104 families,
and 273 genera were detected in the oral plaque samples. At
the phylum level, Firmicutes, Proteobacteria, and Fusobac-
teria were the main phyla among the three cohorts (Fig. 2A).
Specifically, the relative abundance of Firmicutes in the CC
cohort (50.6%) was higher than that in the CH and HH cohorts
(34.1% and 34.5%, respectively). In the CH cohort, the relative
abundance of Proteobacteria (34.4%) was higher than that in
the CC cohort (21.2%) and was similar to that of the HH cohort
(31.3%). Fusobacteria was mainly concentrated in the HH
cohort, with a relative abundance of 15.3%. In the CC and
CH cohorts, the relative abundance of Fusobacteria was 8.2%
and 9.9%, respectively.
At the genus level, the top three genera in the three cohorts

were Streptococcus, Neisseria, and Leptotrichia (Fig. 2B). The
relative abundance of Streptococcus was roughly equal among
the three cohorts, while the relative abundance of Neisseria
decreased with the degree of ECC. For each cohort, the relative
abundance of Neisseria in the CC, CH and HH cohort was
6.1%, 10.6%, and 14.9%, respectively. The relative abundance
of Leptotrichiawas 10.5% in the HH cohort, which was higher
than that in the CC (6.2%) and CH cohorts (6.5%).

3.3 Difference of oral microbial taxonomical
and functional composition in caries and
healthy children
LEfSe analysis was performed to identify the dominant mi-
crobes and their functions. We obtained 29 taxa with LDA
> 3.5 (Fig. 3A) and 34 signaling pathways with LDA >2.0
(Fig. 3B). The main microbes were different in all the three co-
horts. As shown in Fig. 3A, the main genera of the HH cohort
were Neisseria, Leptotrichia, Porphyromonas, and Gemella.
The CC cohort included Lactobacillus, Veillonella, and Pre-
votella 7. While the dominant bacteria in the CH cohort were
Actinomyces, Bifidobacterium, and Abiotrophia.
According to the third level of KEGG pathway analysis,

the functions were mainly involved in cellular processes,
environmental information processing, genetic information
processing, human diseases, metabolism, and organismal
systems (Fig. 3B). For example, the HH cohort was involved

https://huttenhower.sph.harvard.edu/galaxy/
http://www.r-project.org/
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FIGURE 1. The diversity and oral microbiota composition in carious and healthy sites of ECC (CC and CH) and healthy
controls (HH). (A) Shannon index and (B) Simpson index of microbial diversity revealed no significant difference among the CC,
CH and HH cohorts. (C) Bray-Curtis analysis and (D) Unweighted-UniFrac analysis revealed that the beta-diversity of the HH
cohorts was lower than that of other cohorts. The taxonomical composition (E) and functional composition (F) in each child (CC
and CH cohorts) based on PCoA revealed significant differences between different sites in one child. The dotted line indicates
that the oral samples were from the same individual (Bray-Curtis distance, PERMANOVA). (*p < 0.05; **p < 0.01; ***p <

0.001; NS: No Significance; Kruskal-Wallis test and PERMANOVA).
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FIGURE 2. Shifts of the oral microbiota in children with ECC and healthy individuals. The relative abundance of oral
microbiota at the phylum (A) and genus (B) levels showed the dominant microbiota among CC, CH and HH cohorts. The top 10
phyla and genera are presented.

in the biosynthesis of terpenoids and steroids, lipoic acid
metabolism, and biotin metabolism, while the CC cohort
was associated with histidine metabolism, biosynthesis of
amino acids, and fructose and mannose metabolism. In
the CH cohort, the main functions included biosynthesis
of unsaturated fatty acids and the adipocytokine signaling
pathway.
LDA, a supervised discrimination method, was used to

assess themicrobial composition (Fig. 3C) and functional char-
acteristics (Fig. 3D). The results confirmed that the microbial
composition and function varied due to differences in the oral
health states.

3.4 Analysis of oral microbiota competition
in different cohorts
Co-occurrence networks help us to better understand the re-
lationship among the oral microbiotal components from an
ecological perspective. Hence, the interactions of dominant
genera based on the SparCC algorithm were studied. In the
genus-genus co-occurrence network, 35 different abundant
genera with positive or negative relationships were identified
in the CC cohort (Fig. 4). Similarly, 30 and 39 different
abundant genera were obtained in the CH and HH cohorts, re-
spectively (Fig. 4). In terms of edges, two related genera were
connected, and the number of edges was positively correlated
with complexity. The edges of the CC, CH, and HH cohorts
were 56, 59, and 63, respectively. Genera of the same color
were grouped into the same module. The HH cohort had the
largest number of modules and edges, which indicated that the
relationship among genera in the healthy oral environment was
more complicated.
Streptococcus showed a significant positive correlation with

many other genera in the CC cohort, such as Bergeyella,
Abiotrophia, and Rosia (Fig. 4A). While in the CH cohort,
Streptococcus was positively correlated with Actinomyces and

negatively correlatedwith theCandidyDivision SR1 bacterium
MGEHA (Fig. 4B). Streptococcus had the most complex net-
work relationship in the HH cohort, but this relationship was
mainly negatively correlated (e.g., Campylobacter, Prevotella,
and Fusobacterium; Fig. 4C). This demonstrated that diverse
microbes dominated in different groups, which caused the
diverse functional modules to be enriched in the different
cohorts.

3.5 Identification of the biomarkers for ECC

Considering that each cohort had distinctive microbiota, it
was possible to search for biomarkers representing different
healthy states. A random forest model was constructed at
the genus level. Through 10-fold cross-validation and 10
repetitions, the results showed that the error rate decreased
sharply as the number of genera increased. The lowest clas-
sification error rate was observed when 10 genera were se-
lected as biomarkers (Fig. 5A). According to the Mean De-
crease Accuracy, the ranking index of the importance of char-
acterizing genera was used to determine the top 10 genera
(Fig. 5B), which were chosen as biomarkers. Their rela-
tive abundances are shown in Fig. 5C. The biomarkers in-
cludedFirmicutes (Gemella, o-Lactobacillus, Veillonella, Lac-
tobacillus and Abiotrophia), Proteobacteria (f-Neisseria and
Cardiobacterium), Actinobacteria (Actinobacillus), and Bac-
teroidetes (Prevotella 7). The accuracy of these biomarkers
for model classification was assessed (Fig. 5D), which shown
an AUC of 89.8% (95% CI: 73.1%–100%). These results
indicated that the classification model had a high predictive
ability, and the biomarkers explored could be of great value in
preventing and diagnosing caries in children.
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FIGURE 3. Difference of oral microbial taxonomical and functional composition in caries and healthy children.
Taxonomical composition (A) and functional composition (B) for identification of the CC, CH and HH cohorts presented the
oral microbiota taxa and functions with significant differences. Linear discriminant analysis was performed to maximize the
separation of the CC, CH and HH cohorts based on (C) taxonomical composition and (D) functional composition.
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FIGURE 4. Correlations between enriched microbiota of the CC (A), CH (B) and HH (C) cohorts. The nodes represent
different genera, and their sizes represent the relative abundance; same color represents a module. The edges among them indicate
correlations; red indicates a negative correlation, and green indicates a positive correlation.

4. Discussion

As one of the most common chronic oral diseases, ECC could
delay children’s growth, if not treated in time [24]. In this
study, we found differences in the oral microbiota between
children with ECC and healthy individuals. The genera of
the healthy cohort included Neisseria, Leptotrichia, Porphy-
romonas and Gemella. Comparatively, the genera of the CC
cohort were Lactobacillus, Veillonella and Prevotella 7. More
importantly, the oral microbiota in healthy sites of children
with ECC was investigated, and the genera Actinomyces, Bi-
fidobacterium, and Abiotrophia were found to play important
roles in the transition from healthy to ECC states. Additionally,
our constructed diagnostic model based on the random forest
of 10 genera demonstrated a prediction ability of 89.8%.
The diversity in an ecosystem is often termed alpha diver-

sity, which is a comprehensive indicator reflecting the richness
and evenness of a species in a community [25]. Community

diversity is usually represented by the Shannon and Simp-
son indices, which assign more weight to rare species, while
the Simpson index emphasizes the importance of common
species. This study demonstrated no significant difference
in the alpha diversity among the CC, CH and HH cohorts,
which showed that the occurrence of ECC did not change the
biodiversity of the oral microbiota. The results were consistent
with the findings reported by Chen et al. [26], who found
that the richness and diversity of the bacterial communities
were similar between children with caries and those who were
caries-free [26]. Other studies found that the dental plaque of
healthy individuals showed higher diversity than patients with
caries [27]. The controversial conclusions could be attributed
to individual variations, different sample sizes or analytic
procedures used in these studies. Hence, more rigorously
designed experiments are required to shed more light on this
issue.

Beta diversity refers to the community structure of ecosys-
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FIGURE 5. Identification of biomarkers for children with caries and healthy. (A) Correlation between the number of
genera and the cross-validation error. The error rate was lowest when the number of genera was 10. (B) Mean Decrease Accuracy
indices of important genera presented the contribution to the accuracy of the randomForest model. The lower the value, the
smaller the effect on accuracy. (C) Specific relative abundance of biomarkers of each cohort. (D) The ROC of randomForest
model constructed by 10 genera. The diagonal line in the graph markers an AUC of 0.5.

tems [28], which reflects the diversity distance relationship
among samples and the degree of differentiation among bio-
logical communities. The three distance matrices, Bray-Curtis
distance, weighted-UniFrac distance, and unweighted-UniFrac
distance, can be used to characterize beta diversity. The
Bray-Curtis distance matrix is based on the counting statistics
of OTUs, which contains an abundance of information on
OTUs, while the unweighted-UniFrac distance only considers
the existence of OTUs in the samples. The values of the matrix
distance range from 0 to 1, whereby a larger value indicates

a larger difference between the samples. The results also
significantly differed among the CC, CH and HH cohorts.

LEfSe analysis further screened for species with significant
abundance in each cohort (Fig. 3). Among these significantly
different genera, Lactobacillus, Veillonella, and Prevotella 7
were more abundant in the CC cohort than in the other two
cohorts. Lactobacillus is considered a cariogenic bacteria with
acid-producing properties. Veillonella, an early oral coloniza-
tion genus, was once considered helpful in preventing dental
caries due to its ability to decompose lactic acid [29]. How-
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ever, our study and previous studies suggested that Veillonella
plays a more important role in caries development because it is
involved in the co-aggregation and adhesion of S. mutans and
promotes the formation of their biofilms [30, 31]. The results
also showed that Neisseria was more abundant in the healthy
cohort, which was consistent with previous findings reporting
that Neisseria is beneficial to host health [32, 33].
The relationship between human symbiotic microbiota and

the diagnosis and treatment of diseases has become a global
hot topic. The random forest model was applied as a machine
learning model to identify the microbiota and diagnose the
diseases [34]. We aimed to identify genera that could distin-
guish different disease states using the random forest model to
provide a theoretical basis for future disease prevention from
an ecological perspective (Fig. 5). The classification effect of
random forest is usually represented by AUC-ROC, whereby
a larger AUC indicates better classification effects [35]. Here,
the combination of 10 associated genera (Prevotella 7, Acti-
nobacillus, etc.) was shown to effectively discriminate ECC
patients from healthy children with a high accuracy of 89.8%.
Thus, identifying microbial signatures could be a powerful
tool for epidemiological studies and investigating risks of
developing caries.
There were some deficiencies in this work. First, due to

the highly conservative sequence of the 16S rDNA gene, the
reported results can only be accurate to the level of genus and
family, indicating an issue due to limited resolution. Metage-
nomics, as an accurate method to detect the microbiota at
the level of species or strains, can obtain more information
about the distribution of microbiota related to caries. Second,
due to environmental, dietary and other factors, there were
great differences among the investigated dataset; hence, the
sample size is also a potential factor affecting the accuracy of
the analysis. Thus, larger and prospective cohort studies are
required to validate our proposed predictive model.

5. Conclusions

Oral microbiota can be used for the early prediction and pre-
vention of caries in children and provide references for dietary
intervention, probiotics or antibiotic target therapy. We ex-
amined the oral microbiota of the CC and CH areas of ECC
compared with healthy children and explored the microbial
characteristics from various aspects. Our random forest model
based on 10 genera accurately predicted the individual dis-
ease status, indicating that these 10 genera could be used as
biomarkers for clinical diagnosis.
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