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INTRODUCTION

Orthopedic expansion via rapid maxillary expansion (RME)

is gained not only by bodily separation of the midpalatal

suture, but also by additional buccal rotational force on the

maxillary alveolar shelves.1-3 However, the effects of

mandibular expansion are localized to alveolar bones and

mainly induce tooth inclination.4 Reporting the amount of

expansion in the maxilla and mandible differs because of

this fundamental difference in the mechanism of expansion.

Although expansion of the mandible has theoretically never

been successful, several studies have reported good clinical

results with the technique.5-12 There has been some criticism

in the literature for a slow expansion technique in the max-

illa, since the midpalatal suture does not separate.13,14 Never-

theless, for lateral expansion of the maxilla and mandible in

the mixed dentition, appliances with expansion screws, such

as the Schwarz appliance, have been widely used.15,16 

Now a better method to objectively evaluate changes in

the maxillary and mandibular shape that have been treated

with the same type of appliances needs to be developed. The

current, analytical methods utilize cast models or cephalo-

metric radiographs.17-19 The purpose of this research is to
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 analyze the efficacy of the Schwarz appliance using cone-

beam computed tomography (CBCT) imaging.

MATERIALS AND METHODS

The initial data was recorded in a private orthodontic office,

where 28 patients were randomized into two groups: patients

treated with the Schwarz appliances (Exp. Group) and a non-

expanded control group (Non-exp. Group). The subjects

were diagnosed as having Angle Class I malocclusions with

crowding and normal vertical dimensions with no posterior

crossbites. 3D-Rugle CBCT software was used to measure

various reference points before treatment (T0) and during

the retention period approximately 9 months after 6 to 12

months of expansion (T1). The first CBCT (T0) was taken

on patients with an average age of 7 years 11 months

(Schwarz Expansion Group, 14 subjects) and 8 years 0

months (Control Group, 14 subjects), and then the second

CBCT (T1) was taken on patients in both the expansion and

control groups at an average age of 9 years 8 months. 

The expanded group used a Schwarz expansion appliance

on both arches to relieve the anterior crowding (Figure 1).

The maxillary dental arches were also expanded using a

Schwarz appliance in order to maintain the bucco-lingual

relationships of occlusal contact in the posterior teeth during

expansion. Patients wore their expansion appliances at night.

They were activated by rotating the screws once a week.

After 6 to 12 months of expansion, the screws were fixed

with cured composite and were then used as retainers. 
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Figure 1. Upper and lower Schwarz appliances used in this study.

 
 

           
 
 
 

 
 

                

               

             

               

      

 

Landmark for parameter Measured landmarks 

UM1/LM1Crown Distance b/w crowns (the lingual surfaces of the maxillary/mandibular right and left first molar
crown at a point 3 mm coronal to the CEJ)

UM1/LM1CEJ Distance b/w CEJs 

UM1/LM1LAP(lingual-alveolar process) Distance b/w lingual surfaces of the alveolar processes at the maxillary/mandibular right and left
first molar area at a point 2 mm apical to the CEJ

UM1/LM1BAP(buccal-alveolar process) Distance b/w buccal surfaces of the alveolar processes at the maxillary/mandibular right and
left first molar area at a point 2 mm apical to the CEJ

UM1/LM1Root Distance b/w roots (the distance between the maxillary/mandibular right and left first molar
roots at a point 7 mm apical to the CEJ)

MT (middle turbinate) Distance b/w the right and left nasal cavity at the outermost part of the middle turbinate

IT (inferior turbinate) Distance b/w the right and left nasal cavity at the outermost part of the inferior turbinate

UZyg/LZyg (zygomatic bone) Distance b/w zygomatic bones at the outermost part of the zygomatic buttresses on the
maxillary/mandibular first molar plane

LM1IMB (inner mandibular body) Distance b/w inner surface of the mandibular bodies at a point 13 mm apical to the CEJ

LM1OMB (outer mandibular body) Distance b/w outer surface of the mandibular bodies at a point 13 mm apical to the CEJ 

CoO (outermost condylar head) Distance b/w the outermost part of the condylar heads 

Ag (antegonial notch) Distance b/w antegonial notches 

UM1, the maxillary first molars; LM1, the mandibular first molar.

Table I. Summary of measured parameters and associated landmarks 
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To generate images for measurement, a CB MercuRay

(Hitachi Medical Corporation, Tokyo, Japan) was used with

patients seated and their heads oriented in a natural posi-

tion.20

Five different software programs, Volume-Rugle (Medic

Engineering, Kyoto, Japan), MicroAVS (KGT, Tokyo,

Japan), VVD2RGL, Point-Rugle and 3D-Rugle (Medic

Engineering, Kyoto, Japan) were used to transform the Dig-

ital Imaging and Communication in Medicine (DICOM)

data from the CBCT images into polygon data. Since the

iterative closest point (ICP) method21,22 is able to superim-

pose images very precisely with repeatability where numer-

ous corresponding points are utilized to compare point-

based registrations,23,24 the ICP method was used to superim-

pose the two 3-dimensional (3D) images at T0 and T1. These

methods make an accurate superimposition of two separate

multiplanar reconstruction (MPR) images possible. Specific

points of the cranial base were used as reference points for

registration (superimposition) to enhance the accuracy of the

ICP method since the cranial base is not greatly influenced

by growth.25,26 

The combined images were cut down an arbitrary plane

and separated into two units. The MPR images, which dis-

play excellent dimensional accuracy,27 were used to compare

T0 and T1 data. 

A slice plane perpendicular to the occlusal plane, passing

through both sides of the mesial buccal cusp tips of the max-

illary and mandibular first molars, was prepared for the mea-

surements. The 3D-Rugle software program was used for the

measurements, and the distances at T0 and T1 were mea-

sured as follows. 

Seventeen points of interest were measured, including the

maxillary and mandibular first molar crowns,

cementoenamel junctions (CEJs), roots, buccal and lingual

alveolar processes, the inner surface of the nasal cavity at the

middle turbinate and inferior turbinate, mandibular bodies,

zygomatic bones, condylar heads, and antegonial notches

(Table I, Figure 2). In addition, the distances of the crowns,

CEJs, labial and lingual alveolar processes, and the labial

and lingual outer mandibular cortices at the first mandibular

deciduous molars (13 mm apical to the CEJ) were measured

at a point 18 mm anterior from the mesial cusps of the

mandibular first molars. The same measurements were made

on the first maxillary deciduous molars, at a point 16 mm

anterior from the mesial cusps of the maxillary first molars. 

To see if there was a relationship between the amount of

expansion or tipping and the change in cortical bone thick-

ness at the mandibular and maxillary first molars, the first

mandibular and maxillary deciduous molars, and the second

mandibular and maxillary deciduous molars, axial CBCT

images were taken at 2 mm apical to the CEJ (Figures 3 and

4). 

In order to compare clinical changes in the control and

the expansion groups, cephalometric and cast measurements

were made. Lateral cephalometric radiographs were traced

by a single investigator (KT) to minimize measurement

error. Sixteen points were digitized on each cephalometric

radiograph, and 12 cephalometric measurements were made.

Three measurements were made on mandibular and

maxillary casts: arch crowding,28 arch perimeter,29,30 and arch

length.29,30 The dental cast measurements were made with a

Digimatic Caliper (no. NTD 12-15PMX, Mitsutoyo, Kana-

gawa, Japan) accurate to 0.01 mm.

Measurement error

One examiner (KT) performed all the measurements to

eliminate inter-examiner errors. Intra-examiner reliability

was evaluated to identify systematic errors and to compare

measurement accuracy. Sources of error included landmark

location, anatomic contours, and tracing from the cephalo-

Figure 2. Reference points and lines: 1, middle turbinate; 2, zygomatic bone; 3, inferior turbinate; 4, UM1 root; 5, UM1 lingual-alveolar
process; 6, UM1 buccal-alveolar process; 7, UM1 CEJ; 8, UM1 crown; 9, LM1crown; 10, LM1 CEJ; 11, LM1 lingual-alveolar process; 12, LM1
buccal-alveolar process; 13, LM1 root; 14, LM1 inner mandibular body; 15, LM1 outer mandibular body; 16, outermost condylar head; 17,
antegonial notch.

 
 

           
 
 
 

 
 

                

               

             

               

      

 

D
ow

nloaded from
 http://m

eridian.allenpress.com
/jcpd/article-pdf/35/1/111/1747568/jcpd_35_1_b21t44rj34027603.pdf by Bharati Vidyapeeth D

ental C
ollege & H

ospital user on 25 June 2022



Cone-Beam Computed Tomography

grams, and digitizing of the cephalograms, the data conver-

sion from different software programs, and all linear and

angular measurements from the CBCT, as well as all linear

measurements from the dental casts. In addition, the investi-

gator was blinded with respect to the group being measured

to prevent bias in the measurement of the expansion versus

non-expansion groups. Tracing and digitizing errors of

cephalograms, the data conversion errors from different soft-

ware programs, linear and angular measurement error of

CBCT, as well as all linear measurements from the dental

casts were determined by performing each measurement at

least ten times on two separate occasions, 2 weeks apart.

Five randomly selected subjects from each group (expan-

sion/non-expansion) were measured at least twice on two

separate occasions, 2 weeks apart, by the same investigator.

No statistically significant differences were found between

any measurements based on the intraclass correlation coeffi-

cients (ICC).31

Statistical analysis

Descriptive statistics were calculated for each measure-

ment. The data was analyzed using a statistical software

package (SPSS version 16.0). Treatment changes between

the control and treatment groups and between T0 and T1

were analyzed by the Mann-Whitney U-test. A value of P <

.05 was considered to indicate statistical significance. 

RESULTS

The MPR images revealed that the Schwarz expansion

group showed a marked expansion in comparison to the con-

trol group. The mean inter-mandibular first molar length

increased by 5.41 mm at the crown level, by 4.39 mm at the

CEJ, by 2.40 mm at the root, by 3.75 mm at the mandibular

alveolar lingual point, and by 3.84 mm at the mandibular

alveolar buccal point in the Schwarz expansion group. Sig-

nificant (P < .05) differences were observed between the

groups with regard to the teeth and alveolar bone. However,

no significant differences were seen regarding the mandibu-

lar bodies (P = .695), zygomatic bones (P = .893), condylar

heads (P = .913), and antegonial notches (P = .724) (Figure

5).

The deciduous mandibular first molars were also

observed to have expanded. However, due to the root resorp-

tion process, the root itself was not measured. For the

Schwarz expansion group, the mean inter-crown width of

the deciduous mandibular first molar crowns increased by

5.90 mm, the mean width at the CEJ by 4.69 mm, the mean

width at the mandibular alveolar lingual point by 4.20 mm,

and the mean mandibular alveolar buccal point by 4.25 mm.

Significant (P < .05) differences were observed between the

groups in regard to the teeth and alveolar bone (Figure 5).

The mean inter-maxillary first molar length increased by

6.04 mm at the crown level, by 5.14 mm at the CEJ, by 3.32

mm at the root, by 3.55 mm at the maxillary alveolar lingual

point, and by 4.05 mm at the maxillary alveolar buccal point

in the Schwarz expansion group. Significant (P < .05) dif-

ferences were observed between the groups with regard to

the teeth, alveolar bone and nasal cavity at the level of the

inferior turbinates. However, no significant differences were

seen regarding the nasal cavity at the middle turbinates (P =

.127) and zygomatic bones (P = .732) (Figure 6).

The deciduous maxillary first molars were also observed

to have expanded. However, due to the root resorption

process, the root itself was not measured. For the Schwarz

114 The Journal of Clinical Pediatric Dentistry Volume 35, Number 1/2010

Figure 3. An axial plane depicting measurements at 2 mm apical to
the CEJ. BMW (Buccal mandibular width): distance b/w right and
left buccal cortical plates, LMW (Lingual mandibular width): distance
b/w right and left lingual cortical plates.

 

                

             

         

 

 
                

              

         

 

Figure 4. An axial plane depicting measurements at 2 mm apical to
the CEJ. BMW (Buccal maxillary width): distance b/w right and left
buccal cortical plates, PMW (Palatal maxillary width): distance b/w
right and left palatal cortical plates. 
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expansion group, the mean inter-crown width of the decidu-

ous maxillary first molar crowns increased by 6.21 mm, the

mean width at the CEJ by 5.19 mm, the mean width at the

maxillary alveolar lingual point by 3.80 mm, and the maxil-

lary alveolar buccal point by a mean of 4.36 mm. Significant

(P < .05) differences were observed between the groups in

regard to the teeth and alveolar bone (Figure 6).

When comparing T0 and T1 values at 2 mm apical to the

CEJ level, the buccal and lingual maxillary and mandibular

width values showed significant (P < 0.05) differences in the

expansion group (Table II). However, with the maxillary

width (BMW-PMW) showed significant (P < 0.05) changes

compared with the mandibular width (BMW-LMW) which

did not show significance (Table III).

Table IV shows the measurements at T0 and T1 of both

groups. There were no significant skeletal, dental, and soft

tissue lip profile changes at T0 and T1. However, in

mandibular and maxillary cast measurements, there were

statistically significant changes in arch crowding and arch

perimeter from T0 to T1 in the expansion group. 

CBCT images can show precise changes in internal struc-

tures, including tooth roots, where the center of rotation of

Figure 5. Comparison of the amount of expansion between the control and the treatment groups in the mandible. A Schwarz appliance
expands mandibular teeth mainly by inclination movement; in addition it slightly expands the alveolar process and the root tips. Mandibular
bodies, zygomatic bones, condylar heads and antegonial notches are not significantly affected by Schwarz appliances.

 
                

             

              

             

 
                

              

               

               

  

 

Figure 6. Comparison of the amount of expansion between the control and the treatment groups in the maxilla. A Schwarz appliance expands
maxillary teeth mainly by inclination movement; plus it slightly expands the alveolar process, the root tip and nasal cavity at the inferior
turbinates. Zygomatic bones and the nasal cavity at the middle turbinates are not significantly affected by Schwarz appliances.
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teeth expanded by the Schwarz appliance was seen below

the root tip. Plotting the points of crowns, necks and roots

generated a straight line. This line demonstrated that the

mean center of rotation was 2.49 mm (SD, 1.13 mm; range,

0.08-4.21 mm) apical to the root tip on the long axis of the

mandibular first molar. The mean maxillary rotation center

was located at 6.31 mm (SD, 1.49 mm; range, 4.34-8.95

mm) apical to the equivalent part to the root tips (the inter-

section of the long axis of the tooth and a line that was con-

nected with the lingual and buccal root tips) of the maxillary

116 The Journal of Clinical Pediatric Dentistry Volume 35, Number 1/2010

Table II. Comparison of Non-exp. Group and Exp. Group mandibular and maxillary widths measurements 

Non-exp. Group Exp. Group

T0 T1 Changes T0 T1 Changes Mann-Whitney
with growth with treatment U-test (Sig)  

Group Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Maxillary arch

At 2mm apical to the CEJ (mm)

BMxW Dm1 52.02 3.78 53.11 3.52 1.09 0.59 50.36 3.52 54.72 3.77 4.36 1.03 *

PMxW Dm1 28.04 3.22 29.01 3.11 0.97 0.43 26.21 2.16 30.01 3.67 3.80 0.94 *

BMxW Dm2 55.98 3.45 57.08 2.98 1.10 0.58 54.20 3.25 58.39 3.73 4.19 0.83 *

PMxW Dm2 30.26 3.43 31.19 2.76 0.93 0.64 29.36 2.87 33.07 3.42 3.71 0.76 *

BMxW M1 61.19 2.97 62.32 3.87 1.13 0.36 59.36 3.24 63.41 4.02 4.05 1.02 *

PMxW M1 32.78 3.04 33.76 3.63 0.98 0.35 31.04 2.89 34.59 3.03 3.55 0.88 *

Mandibular arch 

At 2mm apical to the CEJ (mm)  

BMnW Dm1 39.44 5.52 40.46 5.68 1.02 0.54 38.87 5.58 43.12 5.61 4.25 1.54 *

LMnW Dm1 23.22 6.03 24.21 6.12 0.99 0.32 22.47 4.84 26.67 4.75 4.20 1.74 *

BMnW Dm2 49.12 4.05 50.04 4.15 0.92 0.53 48.12 3.87 52.22 4.05 4.10 1.68 *

LMnW Dm2 29.41 4.34 30.30 4.19 0.88 0.48 28.04 3.13 32.07 3.56 4.02 1.35 *

BMnW M1 57.91 5.28 58.72 5.22 0.81 0.43 56.04 4.51 59.88 5.12 3.84 1.74 *

LMnW M1 34.06 4.84 34.81 4.79 0.75 0.40 32.49 3.29 36.24 3.98 3.75 1.58 *

BMxW, buccal maxillary width; PMxW, palatal maxillary width; BMnW, buccal mandibular width; LMnW, lingual mandibular width; Dm1, first
deciduous molar; Dm2, second deciduous molar; M1, first molar.
*P <0.05; NS, not significant; Sig, significance.

Table III. Comparison of the width changes between maxillary and mandibular bone in the control and the treatment groups

Non-exp. Group Exp. Group

T0 T1 Changes T0 T1 Changes Mann-Whitney
with growth with treatment U-test (Sig)  

Group Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Maxillary arch

At 2mm apical to the CEJ (mm)

MxW Dm1 23.98 2.13 24.10 1.96 0.12 0.02 24.15 1.49 24.64 1.87 0.49 0.13 *

MxW Dm2 25.72 1.87 25.89 2.01 0.17 0.05 24.84 2.24 25.43 2.01 0.59 0.20 *

MxW M1 28.41 1.65 28.56 2.24 0.15 0.08 28.32 2.43 28.87 2.65 0.55 0.19 *

Mandibular arch 

At 2mm apical to the CEJ (mm)

MnW Dm1 16.22 1.24 16.25 1.13 0.03 0.01 16.40 1.09 16.45 1.17 0.05 0.02 NS

MnW Dm2 19.71 1.52 19.74 1.43 0.04 0.01 20.08 1.83 20.15 1.99 0.08 0.03 NS

MnW M1 23.85 2.14 23.91 2.02 0.06 0.02 23.55 1.68 23.64 1.79 0.09 0.04 NS

MxW, maxillary width (BMW-PMW); MnW, mandibular width (BMW-LMW); Dm1, first deciduous molar; Dm2, second deciduous molar; M1,

first molar.

*P <0.05; NS, not significant; Sig, significance.
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first molar (Figure 7).

The CBCT images in the expansion group revealed that

the mandibular right first molar was uprighted an average of

8.5° (SD, 1.5°; range, 6.2-11.3°) and the average clinical

crown inclination value became -24.0° (SD, 3.8°; range, -

28.9-18.1°). The mandibular left first molar was uprighted

an average of 8.9° (SD, 1.4°; range, 6.7-11.2°) and the

average clinical crown inclination value became -22.5° (SD,

3.4°; range, -29.1-17.5°) (Figure 7).

The maxillary right first molar was bucally tipped by an

average of 7.6° (SD, 1.4°; range, 5.8-10.3°) and the average

clinical crown inclination became -4.61° (SD, 1.7°; range, -

9.4-2.5°). The maxillary left first molar was bucally tipped

by an average of 8.4° (SD, 1.6°; range, 5.6-10.5°) and the

average clinical crown inclination value became -5.31° (SD,

1.9°; range, -10.1-2.9°) (Figure 7).

DISCUSSION

The posteroanterior (PA) cephalometric radiograph analysis

has not been popular due to the inability to reproduce the

measurement points.32-35 The width change of the jaw in the

canine part, the first premolar part and the first molar part

respectively were impossible to determine using conven-

tional radiographic evaluations. By using this new superim-

position technique, the axial and coronal sections of 3D

images can be easily analyzed. 

The 3D superimposition technique for monitoring a

young, growing patient over time is much more complicated

than the 2D superimposition method because 3D projections

cannot be used for precise landmark location or selection of

anatomic regions, therefore this study had to develop a

process for the creation, registration, and superimposition of

3D images. The 3D data at T0 and T1 were superimposed at

the cranial base utilizing the ICP method. The fusion data

was then cut with an arbitrary plane and the MPR images

were easily analyzed. Using this method, the mandibular and

maxillary first molar inclination changes were accurately

determined by measuring the angles between horizontal ref-

erence lines connecting the center of the zygomatic bones

and the long axis of the mandibular first molars.

The lingual crown inclination of normally occluded

mandibular posterior teeth progressively increases from

Table IV. Comparison of Non-exp.Group and Exp.Group cephalometric and cast measurements 

Non-exp. Group Exp. Group

T0 T1 Changes T0 T1 Changes Mann-Whitney
with growth with treatment U-test (Sig)  

Group Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Angular skeletal (°) 

Facial angle 84.39 2.64 83.80 2.59 -0.59 0.39 83.57 2.63 83.71 2.61 0.14 0.12 NS

Angle of convexity 4.21 1.89 3.80 1.79 -0.41 0.77 4.17 1.32 3.61 1.29 -0.56 0.40 NS

FMA 29.79 2.64 30.26 2.54 0.47 0.93 28.90 2.28 29.49 2.25 0.59 0.51 NS

SNA 82.16 3.73 82.23 3.66 0.07 0.05 81.56 4.05 82.11 4.02 0.55 0.11 NS

SNB 80.01 2.43 80.12 2.32 0.11 0.09 79.59 3.45 80.01 3.39 0.43 0.14 NS

ANB 2.15 0.73 2.11 0.64 -0.04 0.04 1.97 1.55 2.10 1.49 0.13 0.10 NS

Angular (°) and Linear (mm) dental 

U1 to SN 100.90 11.60 104.52 10.50 3.62 3.59 101.19 7.82 105.14 7.01 3.95 3.39 NS

Interincisal angle 132.03 9.04 125.54 10.52 -6.49 3.02 133.37 7.54 124.86 7.74 -8.51 5.53 NS

IMPA 92.60 7.11 93.89 7.52 1.29 2.10 93.59 5.45 96.36 4.85 2.78 1.91 NS

L1-APO (degree) 25.19 2.84 25.73 2.63 0.54 0.45 24.29 2.36 25.28 2.28 0.99 0.50 NS

L1-APO (mm) 3.06 1.50 3.39 1.40 0.34 0.29 2.97 1.81 3.70 1.52 0.73 0.45 NS

Linear soft tissue (mm)

Upper lip E-Line 2.00 1.71 1.37 1.68 -0.63 0.50 2.08 1.90 1.60 1.75 -0.48 0.35 NS

Lower lip E-line 2.61 2.04 1.91 1.67 -0.71 0.63 2.95 1.73 2.39 1.57 -0.56 0.50 NS

Maxillary cast measurements (mm)

Arch crowding -4.12 0.92 -3.39 0.89 0.73 0.27 -3.91 1.15 -0.82 0.46 3.09 0.94 *

Arch perimeter 70.31 5.03 71.29 5.21 0.98 0.32 69.78 3.99 73.74 4.58 3.96 1.02 *

Arch length 26.25 2.46 27.09 1.69 0.84 0.55 26.38 1.76 27.31 2.14 0.93 0.38 NS

Mandibular cast measurements (mm)

Arch crowding -3.83 0.87 -3.17 1.27 0.66 0.50 -3.59 1.21 -0.78 0.70 2.80 1.14 *

Arch perimeter 66.26 4.77 67.04 4.95 0.78 0.65 66.35 3.36 70.11 3.58 3.76 1.62 *

Arch length 23.06 2.28 23.87 2.56 0.81 0.75 24.92 2.11 25.84 1.95 0.92 0.80 NS

*P <0.05; NS, not significant; Sig, significance.
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canines through second molars. Andrews36 suggested that the

degree of buccolingual inclination of the mandibular first

molar is approximately -30°. In the present study, the

mandibular molars after treatment were uprighted to approx-

imately -23°, not straight upright (approximately 0 to -12°)

which would be detrimental to masticatory mandibular

movements.37,38 The data would indicate the permissible limit

for mandibular expansion.39,40

CBCT analysis was able to demonstrate that mandibular

bodies are not affected by Schwarz appliances even after

teeth and alveolar bases have been expanded. Some reports

have stated that Schwarz appliances produce mandibular

expansion in just the alveolar bone and may induce tooth

inclination.15,16 Although dental arches expand mainly by

tooth inclination, the distance between the root tips also

increases and the amount of displacement of the alveolar

bone is almost the same on the buccal and the lingual

side.39,40 This similarity may be due to the remodeling of the

alveolar process.

As defined originally by Frost,41,42 bone modeling is an

uncoupled process that results in a net change in size or form

of osseous tissue. In human adults, typical remodeling rates

are about 3% per year for cortical and 24% per year for tra-

becular bone.41-43 The lower rate in mandible occurs because

only the inner portion of the cortex undergoes the intense

turnover of the metabolic fraction, whereas the outer cortex

is protected by mechanical function. Therefore, when ortho-

dontic force is applied, clinically the maxillary teeth tend to

move faster than those in the mandible.43

In mandibular and maxillary cast measurements the arch

length change was not significant because the Schwarz

appliance expanded the arch widths transversely rather than

sagittaly. According to cepahalometric measurements, IMPA

and L1-APo increased slightly more in the expansion group

than in the non-expansion group, but the difference was not

significant. Furthermore, soft tissue lip profile changes were

not significant because of a corresponding growth of the

patient’s nose.

A fixed RME appliance compresses the periodontal liga-

ment, bends the alveolar processes, tips anterior teeth, and

gradually opens the midpalatal suture.44 During the maxil-

lary expansion, the nasal cavity is also widened since its lat-

eral walls and floor are formed by maxillary processes.

Because of the maxillary expansion, an increase in width of

the nasal cavity is sometimes observed, possibly leading to

decreased nasal resistance and improved airflow.44-48 A fixed

RME appliance expands the nasal cavity width by an aver-

age 1.9 mm, but it widens it as much as 8 to 10 mm47 at the

inferior turbinates, while the more superior areas might

move medially.48 The increase in width of the nasal cavity

has an important clinical implication concerning nasal

breathing since several authors49-53 have shown increased per-

meability. Another supporting factor in the improvement of

the nasal permeability is the lowering of the palate as a con-

sequence of a fixed RME.

From this study, expansion across the nasal floor was

118 The Journal of Clinical Pediatric Dentistry Volume 35, Number 1/2010

Figure 7. Coronal section at the level of the first molars. During expansion (dashed lines), the alveolar ridges tip and bend buccally, the teeth
also tip buccally within the alveoli. The measurements show the amount of change in the expansion group including patient growth.
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1.17 mm, or 19% of the mean Schwarz appliance expansion

of 6.04 mm. This is similar to findings with computed

tomography by Garib et al,54 who found nasal floor separa-

tion to be one-third of the fixed RME appliance. Other stud-

ies report that fixed RME appliances increase nasal volume,

possibly leading to decreased nasal resistance and improved

airflow.55,56

A fixed RME is believed to result in maximum skeletal

displacement and bodily tooth movement with minimum

dental tipping.45,57 The mean rate of slow appliance expansion

in this study was 0.175 mm per week. Slow expansion, on

the other hand, is supposed to produce less tissue resistance

in the circummaxillary structures and better bone formation

in the intermaxillary suture; these help to minimize posterior

relapse.57 Even so, greater buccal tipping of the molars has

been reported in patients treated with slow expanders such

as the quad-helix or the nickel-titanium expander compared

with those treated with RME appliances.58,59

Removable expansion plates are not recommended if sig-

nificant skeletal changes are required. Midpalatal splitting

with such appliances is possible, but not certain. For these

appliances to be effective, they must be used in the decidu-

ous or early mixed dentition and must have sufficient reten-

tion to be stable during the expansion period.60,61 In conjunc-

tion with the enhanced response to maxillary expansion,

early treatment appears to allow less complex and lower-

force expansion systems to be used to increase in maxillary

arch width. The primary consideration ultimately involves

determination of an appropriate expansion protocol which

would promote orthopedic movement of the maxillary seg-

ments while maintaining optimal tissue intergirty and mini-

mizing orthodontic tipping effects.

The removable expander is still able to generate consid-

erable forces that may be able to generate considerable

forces in young children to stimulate the midpalatal suture,

especially when the appliance is worn for many hours. The

findings of this research and clinical experience are encour-

aging when answering the efficacy of the removable

expander, but studies on long-term stability still need to be

done. 

Future studies will include long-term data including post-

expansion measurements. The present study was focused

more on evaluating overall dentoalveolar changes over time

in patients using a Schwarz appliance in comparison to a

control group using MPR image analysis derived from 3D

superimposition. 

CONCLUSIONS

According to our results with the methodology used, we

conclude the following:

1. The MPR image measurements demonstrated that the

Schwarz appliance expands the maxillary and

mandibular first molars mainly by inclination move-

ment; plus it slightly expands the alveolar processes

and root tips. The mandibular bodies, zygomatic

bones, condylar heads and antegonial notches are not

significantly affected by the Schwarz appliance. In

some cases midpalatal suture was opened.

2. Mandibular bone width was not expanded significantly

by the Schwarz appliance, whereas width changes of

maxillary bone were observed. 

3. The center of rotation of a mandibular molar by

Schwarz expansion is located 2.49 mm below the

mandibular root tip on the long axis, and the center of

rotation of a maxillary molar located 6.31 mm below

the equivalent part to the root tips (the intersection of

the long axis of the tooth and a line that was connected

with the lingual and buccal root tips) of the maxillary

first molar. 

4. It was difficult to predict midpalatal suture opening.

However when the mid palatal suture was opened,

expansion of the lower nasal cavity side wall was

observed.
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