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The purpose of this report was to provide the reader with some basic concepts in order to better understand 
the significance and reliability of the results of any article on Pediatric Dentistry. Currently, Pediatric 
Dentists need the best evidence available in the literature on which to base their diagnoses and treatment 
decisions for the children’s oral care. Basic understanding of Biostatistics plays an important role during the 
entire Evidence-Based Dentistry (EBD) process. This report describes Biostatistics fundamentals in order to 
introduce the basic concepts used in statistics, such as summary measures, estimation, hypothesis testing, 
effect size, level of significance, p value, confidence intervals, etc., which are available to Pediatric Dentists 
interested in reading or designing original clinical or epidemiological studies.
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INTRODUCTION

As health science professionals, many Pediatric Dentists are 
interested in how and why facts or phenomena occur along 
our daily clinical or academic activities. New and relevant 

scientific information arise every day, and clinicians who wish to 
remain updated should understand, and effectively and safely apply 
this information during the care of their pediatric dental patients. In 
the practice of Evidence-Based Dentistry (EBD), Pediatric Dentists 
require access to original investigation reports and perform a crit-
ical appraisal of the best published articles, including their design, 
conduct, and analysis of each study, and subsequent interpretation 
of the results about specific oral interventions, supported by clini-
cally relevant scientific evidence.1–4 In addition, Pediatric Dentists 
must possess basic knowledge of investigation techniques, and 
those interested in reading valid literature must learn matters related 
to statistical methods, in order to appraise those data collected from 
studies, whose findings are supposed to be based on sufficiently large 
samples of similar subjects.5,6 Biostatistics (BS), when employed 
cautiously, aids Pediatric Dentists in improving their clinical deci-
sion-making process.7–9

This report describes the BS fundamentals in order to introduce 
the basic concepts used in statistical analysis, such as ‘summary 
measures’, ‘estimation’, ‘hypothesis testing’, ‘effect size’, ‘level of 
significance’, ‘p value’, or ‘confidence intervals’, and make them 
available to those Pediatric Dentists who are interested in improving 
their clinical practice, through the implementation of EBD. This 
learning philosophy consists in applying on their patients the most 
validated clinical evidence collected, taking also in account the own 
Dentist’s clinical experience, and considering the patient’s opinion 
and expectations.2,3

According to Kim and Dailey, Statistics is defined as the field of 
mathematical sciences that deals with data. Besides, “Biostatistics 
is a branch of statistics that emphasizes the statistical applica-
tions in the biomedical and health sciences (including Dentistry). 
It is concerned with making decisions under uncertainties that 
occur when the data are subjected to variation”.10 Human beings 
vary among them in a lot of aspects, as physiology, biochemistry, 
anatomy, environment, lifestyle, pathogenesis, and thus, to the 
responses to different dental and medical therapeutic procedures. 
So, BS collects, analyzes and helps interpret collected data, under 
variable conditions, to assess the results and findings of the newer 
published clinical evidence.10 As you can realize, an essential knowl-
edge of BS is a necessary component during the practice of EBD.

Descriptive analysis: Variables and data summary
Statistical analysis determines, mathematically and with high 

probability, whether an observed outcome occurred because of 
a real factor (an intervention or an exposure to risk) or simply 
by chance. The results of any study are usually documented with 
numbers or with categorical values recorded for each sample, which 
address the behavior of that sample; because this behavior may vary 
from sample to sample, it is called a variable.11,12 Thus, a variable is 
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a quantity that describes an attribute and acquires different values, 
denominated data.13 Before choosing any statistical analysis, it is 
necessary to know that data obtained during the experiment can be 
better understood when the variables are classified correctly, and that 
the type of variable being studied primarily determines the appro-
priate analytical method to carry out. First, variables are classified 
as independent, or predictor, which is a possible cause of variation 
of the outcome-of-interest in an investigation. A dependent variable, 
or effect, is defined as the outcome or response-of-interest; the 
dependent variable varies as a function of the independent variable. 
Normally, statistical analysis depends on the scale of the dependent 
variable; in this regard, the latter are classified as follows:14–17

• Quantitative or numerical: Expressed by numerical values. 
For example, the number of missing or extracted primary 
teeth in each patient, or the length in millimeters of a root 
canal. They should be summarized or reduced to a single 
datum, representing the whole sample, to yield some sort 
of average value, such as the arithmetic mean, or a middle 
value (named median). Among these, continuous variables, 
obtained by measurement of any characteristic, can take 
any value within a given range (e.g., child age in months 
or years, or pediatric weight in kilograms) and may have 
decimal points, while discrete variables, obtained by count 
of units or events, have values equal to integers without 
decimal points (e.g., the number of primary decayed teeth, 
or the number of topical fluoride applications per year).

• Qualitative or categorical: Data is simply assigned as 
“names/nouns”, instead of values, based on the presence 
or absence of a specific characteristic (gender, disease, 
health status, and race). This type of variable is classified 
as nominal or ordinal. Nominal variables are character-
ized in no specific order (e.g., hair color: black, reddish, 
blonde, etc.); they can have only two outcomes (yes or 
no), called dichotomous or binary variables, or three or 
more outcomes (multiple variables). Ordinal variables 
are arranged according to a natural, intrinsic order (e.g., 
pain: mild, moderate, severe; or Frankl’s scale of child’s 
behavior: Definitely negative, negative, positive, definitely 
positive).

Instead of analyzing individual data, biostatistical analysis deal 
with data condensed into summary measures, or a value representing 
the set of all individuals.9,13 The first step in a statistical analysis is to 
describe the different characteristics of the sample studied through 
the summary measures; this step is named descriptive statistics. 
For qualitative data, frequencies, or number of units belonging to a 
specific category, and proportions (percentages) comprise frequently 
employed measures. For quantitative data (discrete or continuous), 
measures of central tendency (‘average value’) and dispersion or 
variability are applied; both play a key role in BS. Mean and median 
are the most common measures of central tendency.1,5,7,9 Mean (or 
average) takes into account all individual values of the data; there-
fore it is sensitive to extreme values; we add up the observed values 
and divide them by the number of the latter. The median is calculated 
by obtaining middle values of a set of data ordered from lowest to 
highest: thus, 50% of the values are smaller than, and 50% of these 
are larger than the median; it is less sensitive and a better central 

measure when one or more observations are widely separated from 
the mean, and may also be used with ordinal data.16,17 The formula 
for calculating the median, regardless whether there is an even or 
odd number of data, is:

Median = (n + 1) / 2

where n is the number of data. In case of an even number, an average 
is obtained from the two central values. For example, odd number of 
data: 2.1, 4.2, 5.9, 6.3, 8.7; median = (5 + 1) / 2 = 3, the third value 
in the series, namely 5.9. Even number of data: 2.1, 4.2, 5.9, 6.3, 8.7, 
9.4; median = (6 + 1) / 2 = 3.5, the average between the third and 
fourth values, (5.9 + 6.3)/2 = 6.1.

All biological data have certain natural or random fluctua-
tion. After calculating the mean, it is necessary to know how the 
observations are scattered around it, and an important measure 
of variability, in this case, is the Standard Deviation (SD), exten-
sively employed with dental and health numerical data; these two 
measures are expressed as ‘mean ± SD’. In case of using the median, 
the dispersion measures employed are the interquartile range and 
the amplitude (both will be detailed below, in the part of ‘normal 
and non-normal distribution of quantitative data’).17,18

Populations and samples
One of the main aims of research in Pediatric Dentistry is to 

infer or generalize the observations obtained from a sample to a 
larger population (all subjects meeting certain characteristics-of-in-
terest). A population commonly contains too many individuals to 
study conveniently, so that an investigation is often restricted to one 
well-chosen and representative sample drawn from the population, 
and from which data are gathered to allow valid and reliable infer-
ences.12,17 So, first, a specific population must entail clearly defined 
features such as age range, gender, race, and health status (selection 
criteria), and then, a subset of this population or sample is randomly 
or non-randomly (e. g., the convenience or quota sampling , made 
up of patients who are easy to gather, for example, at public hospi-
tals, university dental clinics or local malls) selected and subse-
quently studied.16 On employing a sample, we save time, costs, and 
manpower, and efficacy is increased.8 Sample size (expressed as 
‘n’), or the minimal number of required units to achieve satisfactory 
precision and statistical power, is employed to accurately test our 
study hypothesis;7,19 in addition to being ethical, sufficient sample 
size is very important in biomedical investigation and should be 
previously and carefully determined. Calculating the appropriate 
sample size is the most important determinant of the reliability of 
results of a study;20 several factors should be taken on account during 
this process, mainly: the research question, the principal outcome 
(numerical or categorical), type of design and analysis, the smallest 
treatment effect or benefit we would like to be detected (in propor-
tion or mean values) or delta, number of treatments, variability (for 
numerical outcomes), and the maximum risk of obtaining false 
negative or positive results (significance level and power);21,22 some 
of these factors should be determined by the investigators, and some 
of them are collected from previous similar studies or by carrying 
out a pilot study.20,22 Various methodologies for determining sample 
sizes could be employed, mainly through mathematical formulas 
(in which the mentioned factors are included), nomograms (like 
Altman’s), or by employing user-friendly online calculators avail-
able on the internet.21,22 We recommend to read the paper of Pandis 
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et al. (pages e142 to e144), which provides some common formulas 
for calculating the sample size, frequently employed in dental clin-
ical trials, together with several illustrative examples with simulated 
data.21 Furthermore, three useful real examples about sample size 
calculation can be consulted: in Huang et al. (pages 33 and 34), who 
compared the effectiveness of two treatments for white spot lesions, 
in 120 adolescents (12-20 years old);23 in Aminabadi et al. (page 
343), in a trial investigating the association between parenting style 
and child anxiety/behavior during dental procedures in 288 four-to-
six-year-old patients;24 and in Arrow (page 327), who compared in 
a child trial two local anesthetics (articaine and lignocaine) in block 
and infiltration techniques, among 57 Australian patients.25

Regardless the type of clinical study planned, the following 
statement should be taken into account: “The larger the sample size, 
the less the variability within it, and the more accurate and precise 
your results”.13,26–28 However, too large samples may amplify the 
detection of minor differences between the study groups, that, 
though statistical significant, are not clinically relevant (which 
is called type I error). Besides, by using an excessive number of 
participants can also involve more financial and human resources 
than necessary, to obtain the desired response; ethical constraints 
can also be considered, because more individuals will be exposed to 
the proposed procedures, increasing unnecessarily the general risk 
of adverse effects occurrence.20

Normal and non-normal distribution of quantitative 
data

There are many possible distributions of quantitative data. If 
data are symmetrically distributed on both sides around the mean 
and form a smooth, bell-shaped curve with a central ‘hump’ with 
two equal ‘tails’ at either side, the distribution of data is called 
normal or Gaussian (Figure 1); in other words, the greatest amount 
of data values is symmetrically clustered in the center, around 
the mean, and the smaller data values, on the right and left tails.29 

Normal distribution is defined by only two measures: the mean (the 
top of the ‘hump’ in the curve), and the standard deviation (SD); 
both should be supplied to provide a sense of the overall distribu-
tion. This is considered a probability distribution, and the area under 
the bell curve is equal to 1 (or 100%), and because it is symmetrical: 
one half of the area is on the left (0.5 or 50%) and the other on 
the right (0.5 or 50%), both around a centerline, which corresponds 
to the mean. If the observations follow a normal distribution, the 
values lying between the points corresponding to one SD above the 
mean and one SD below it (mean ± 1 SD), include about 68% of all 
values, and the mean ± 2 SD (exactly 1.96 SD), approximately 95% 
of values about the mean, excluding 2.5% above and 2.5% below 
these 2 SD.29,30 Therefore, if we know the mean and SD of a set of 
observations, we can estimate the range of values that we would 
expect to find according to the number of SD around the mean. In an 
ideal distribution, mean and median are equal within samples under 
study. When quantitative data are normally distributed statistical 
methods called parametric tests are indicated.16,26

When one tail of the distribution is longer, or positively or nega-
tively skewed (in a normal distribution, the skew is zero), the data 
are non-normal distributed, due to the presence of outliers or extreme 
values (Figure 2). Therefore, median and interquartile range or the 
amplitude should be used, rather than mean and SD. Quartiles divide 

the ordered data set into four equal parts. The values that divide each 
part are called the first, second, and third quartiles; they are denoted 
by Q1, Q2, and Q3, respectively. Thus, Q1 (or 25th percentile) is 
the “middle” value in the lowest half of the rank-ordered data set; 
Q2 is the median value in the set; and Q3 (or 75th percentile) is the 
“middle” value in the second half of the rank-ordered data set. The 
interquartile range is equal to Q3 minus Q1, and includes 50% of the 
total values, which are positioned around the median. For example, 
this is a series of ordered data: 1.5, 2.2, 5.5, 6.1, 6.2, 8.4, 9.3, 13.6, 
and 15.7. The median (Q2) is 6.1; Q1 is the middle value of the 
lowest half of values (1.5. 2.2, 5.5, 6.1, 6.2), or 5.5; Q3 is the middle 
value of highest half of values (6.2, 8.4, 9.3, 13.6, 15.7), or 9.3. 
The amplitude (highest value minus lowest value) is also commonly 
used, as dispersion measure together the median.11,30,31

When the distribution is skewed, then an appropriate trans-
formation of all raw data, prior to the statistical analysis, may be 
employed, such as logarithmic (log), reciprocal (1/x) or square root 
(√) transformation, in order to decrease the mean and variability 
(SD) of data, and to fit the distribution more closely to the normal 
one. For example, let see these data: 1, 2, 2, 3, 4, 5, 5, 19, and 22; 
the mean and SD are 7 ± 7.81, which indicates a non-normal or 
skewed distribution (note that SD is higher than mean) due to 19 
and 22 values. When the same data are log transformed: 0, .69, .69, 
1.09, 1.38, 1.61, 1.61, 2.94, 3.09, then the mean and SD are equal to 
1.45 ± 1.02; this transformed distribution shows less variability and 
is closer to normal. The measures resulting from these transformed 
data should be retro-transformed to their original scales (antilog) 
once finished the statistical analysis.

However, on occasion it is not possible to utilize this approach; 
thus, alternative tests, known as non-parametric tests, can be 
applied, depending on nature of the data, although the statistical 
power is decreased.32,33 These methods, rank the sample values 
(from lowest to highest) and each datum receives a value, according 
to the order; for example: 3, 4, 8, 9, 15, 18, 26; these values are now, 
the first one, 3, is 1, the next one, 4, is 2, and so forth (26 is 7).18 
(Non-Parametric methods are described in more detail in the part 
two of this paper series). More practical pediatric dentistry exam-
ples about parametric and non-parametric statistical approaches can 
be reviewed in Yassenet al.34, Doğanet al.35, and Tulsaniet al.36.

Inferential analysis: Estimation, hypothesis tests, 
and confidence intervals

By means of statistical methods, dental investigators can make 
generalizations or inferences of the results obtained from the sample 
to its respective population. Any statistical measure in a specific 
population that has been extracted from a sample is called parameter 
(in other words, the measure obtained from the sample is general-
ized to the population, and this measure becomes a parameter).32 For 
example, to know the population mean of a particular characteristic, 
such as the mean number of decayed and restored primary molars in 
a specific ethnic child population – supposing that it is an unknown 
measure –, we can calculate the mean of an adequate random sample 
drawn from that population and use the sample mean to closely 
determine (or estimate) the population (parameter) mean. In other 
words, we have a high security or precision (the appropriate statis-
tical term is confidence) that the sample mean (or a proportion, in 
case of categorical data) is approximately equal to the population 
mean (or proportion). Remember: the larger the sample size, the 
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‘better’ the precision about the population parameter.13 Therefore, 
for a correct inference of population parameters, the investigator 
should choose an adequate sample, with two needed properties: a 
sufficient number and representativeness; this former means that the 
sample must be as similar as possible in many biological or demo-
graphic characteristics, to the population which was extracted.16

Estimation
Parameters, like the prevalence of early childhood caries (ECC) 

in a preschool population living in a specific city or region, are 
typically unknown, and sample statistics are used to generate esti-
mates of these parameters. This process is called ‘estimation’. An 
estimation is the very close, single-valued estimate (also known as 
point estimate) of the population parameter (mean or proportion) 
and always possesses some degree of variability. For example, to 
obtain the prevalence as the proportion of ECC in young children, 
an investigator can randomly gather a sample of sufficient number 
of preschool children (say, 100) from a total population of 5,000 
preschool children, in a Mexican city; then, he or she calculates 
the sample statistic, the percentage of children with the disease (or 

prevalence), and this single value is now considered an estimation 
of the unknown population parameter, or the point estimate of the 
ECC prevalence of the total population, although the total popula-
tion was not studied. However, the point estimate alone is usually 
insufficient in an estimation problem, due to that a sample selected 
at random always will be different from a second sample or many 
other possible samples, although the samples are extracted from the 
same population; consequently, the respective point estimates are 
also different from sample to sample.33 For this reason, we employ 
interval estimates or 95% Confidence intervals (95% CI) instead of 
point estimates. Confidence intervals define an upper limit and a 
lower limit – or confidence limits –, or the interval values between 
which the true population parameter being estimated is contained, 
with 95% confidence or precision (or, how close estimates from 
different samples are to each other), if determined in similar exper-
iments with different random samples. The wider the interval, the 
less precise the result is. Confidence intervals can be established for 
any population parameter (e.g., mean or proportion).16,13,33 Returning 
to the previous example, let us suppose that the investigator found in 
the studied sample a ECC prevalence equal to 6%, with a 95% CI of 

Figure 1. An example of normal distribution: Birth weight in kilogram in a sample of Mexican children (n = 200). The distribution 
curve is symmetric; its hump represents the mean value (4).

Figure 2. Non-normal distributions. In these cases, both distribution curves are not symmetric (tails are skewed). More extreme data 
on the side opposed to the tail, are present.
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4.5–7.5; it means that the true population ECC prevalence is found 
between this value range, with a 95% of security. But if an IC with 
less confidence (e.g. 90%) would be used, then a wider value range 
would be obtained, say, 4-8, which is logically less precise.

In order to determine the 95% confidence limits for quantitative 
variables, it is necessary to calculate the standard error of the mean 
(SE). As noted previously, if different samples are drawn from a 
specific population, their means will vary from one to another. Vari-
ation may be estimated through the SE (instead of the SD), which 
indicates how far the sample mean falls from the true unknown 
population mean, and is calculated by dividing the SD of the sample 
by the square root of the sample size or (n), or:13,28

We previously mentioned that, in normal sample distribution, 
95% of the area under the distribution curve is contained between 
–1.96 and +1.96 SD around the mean. This statement is employed 
to derive the equation for determining 95% CI limits; thus, by multi-
plying the SE by 1.96 a value named margin of error is obtained, 
and finally, the margin of error is added and subtracted from the 
point estimate – in this case, the mean.7,12,30 Thus, the general form of 
a CI is: point estimate ± margin of error. For clarification, SD is part 
of descriptive statistics (for individual values) and SE is a part of 
inferential statistics.18 For example, you want to estimate the mean 
time of effect onset in seconds of a new local anesthetic drug, in a 
sample of 40 children (3-6 yr), before comparing it against the one 
most accepted; the obtained mean and SD were 150 ± 28 seconds, 
then the SE is equal to 28/√40 = 4.43. SE is multiplied by 1.96 = 
8.62, the margin of error, and this is in turn summed and rested to 
150 (the point estimate), thus giving a 95% CI of 141.38–158.62. 
The investigator concludes, with a high security, that the true popu-
lation mean in seconds is located between 141 and 153 seconds.

In cases of qualitative variables, the SE associated with a 
proportion must be calculated to obtain the CI around the propor-
tion. For example, when a dichotomous variable is being analyzed, 
one proportion represents subjects with the characteristic-of-interest 
(p) and the other proportion does not (1-p or q). The formula for 
calculating the SE is:

where n is the sample size; then, the SE is multiplied by 1.96 to 
form the error margin, and finally, as in the case of the mean, the 
error margin is added and subtracted from the proportion with either 
the characteristic (p) of interest or without it (q) to create the CI.11,33

Hypothesis testing
A hypothesis is concerned with answering a simple question on 

comparing the therapeutic effect of two drugs, or on the difference 
between the effects, in a sample drawn from a population. Likewise, 
an investigator may be interested in finding a likely association or 
correlation between two or more population variables.16,18 Associa-
tion refers to the extent to which two or more qualitative variables 
tend to occur together, for example, a cause-effect relationship; 

common association measures are the relative risk or the risk differ-
ence, for cross-sectional or prospective studies (or cohorts), and the 
odds-ratios for retrospective or case-control studies.14 Correlation 
denotes the interdependence or the degree to which a quantitative 
variable increases or decreases as another, one or more, quantita-
tive variable also changes.32 For example, is correlated the monthly 
amount of ingested carbohydrates with the DMF index values in 
young children? Two statistical tests are appropriate for answering 
this type of epidemiological questions: The Pearson’s correlation 
coefficient, for normal data, and the Spearman’s test, for non-normal 
data.32 Therefore, a typical investigative question may be expressed 
in terms of there being some differences between groups or an asso-
ciation among different variables (possible causality), for example: 
“Is group A different from group B?”, “Are factors 1 and 2 associated 
with or are they the cause of a disease?”, “Does a new treatment 
have an effect on a population?” and “Is this new treatment better 
than the standardized treatment or than a placebo?”.19,27 Excellent 
explanations and examples about association measures and correla-
tion can be seen in Hackshaw et al. pages 44-50, and D’Agostino et 
al. pages 466-476, respectively.2,18

Proportions, in the case of qualitative variables, and means 
and medians, when quantitative variables are used, are all outcome 
measures employed in BS. In hypothesis testing, these measures 
must be compared between groups of subjects to obtain what is 
called effect size, or an assessment of the magnitude of the differ-
ence or association between these groups.16,32

When a study is planned, an explicit statement or hypothesis 
is generated with regard to an effect of an intervention, or vari-
able association, and the primary aim of statistical analysis is 
to find out whether the effect size is real and not due to chance. 
Thus, hypothesis testing helps determine the likelihood that the 
result would occur even if the study were repeated over and over. 
Statistical analysis can never prove the truth of a hypothesis, but 
can provide the evidence to support or refute it.5,11,27 To do this, the 
question should be stated in terms of equality, no difference, or no 
association between groups, which is known as the null hypothesis, 
an assumption that there is no existing significant difference or 
association between groups or variables-of-interest. Examples of 
null hypothesis for the next research questions could be: Is group A 
different from group B? (Null hypothesis: Group A is NOT different 
from group B); are factors 1 and 2 associated with, or are they 
the cause of a disease? (Null hypothesis: Factor 1 and factor 2 are 
NOT associated, and are NOT cause of a disease either); and, is 
this new treatment better than the standardized treatment or than a 
placebo? (Null hypothesis: The new treatment is NOT better than 
the standardized treatment, and not better than the placebo either). 
In hypothesis testing, we prove how likely it is that any observed 
difference or association is explained by chance alone, or statisti-
cally not significant, if the null hypothesis is true. When the null 
hypothesis is rejected, then the alternative hypothesis – one that sets 
a true difference or association between groups and is contrary to 
the null hypothesis – is accepted, it means that the results are statis-
tically significant, perhaps clinically meaningful, and not explained 
by chance.17Obviously, the majority of investigators favors rejecting 
the null hypothesis; thus, the analysis usually assigns a test of the 
level of statistical significance.
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Several statistical tests are available, according to any type of 
investigation. The final result of a biostatistical test is the level of 
significance of the event or outcome. For this purpose, we can use 
the p value.28,29 This value is always related to hypothesis testing and 
indicates the probability of obtaining the result that was observed by 
chance only (or non-significant). The p value is calculated after the 
test has been performed; if p is less than the conventional level of 
significance value (or α) of 0.05, the null hypothesis is rejected. In 
other words, our results would be wrong in 5% of cases if the study 
were repeated many times.11,28,29

Confidence intervals
Confidence intervals (CI) are also used in hypothesis testing. 

There is a close relationship between confidence intervals and 
significance tests. In general, if the value of a difference or asso-
ciation is significantly different from zero at the 0.05 level, then 
the 95% CI will not contain zero, and the null hypothesis can be 
rejected. As stated previously, all values within the CI are plausible 
values for the parameter, whereas values outside of the CI are ruled 
out as plausible values for the parameter.33

The majority of authors recommends the regular reporting of 
CI because simply mentioning the p value31,32 by itself is not suffi-
cient, as it does not provide information on the size of the effect. CI 
provide more meaningful evidence on the magnitude of the effect 
because they do not only contain information from p values, but 
additionally demonstrate the direction of the treatment effect, the 
size of the effect estimate, and its degree of precision. Therefore, 
both p and CI should be reported.13,27,30  Here a real example. In 2015, 
Chi et al. investigated a possible positive association between added 

sugar intake (g/day, measured from hair samples) and tooth decay, 
measured as the mean proportion of carious tooth surfaces, in a 
sample of 51 Alaska Native children (6-17 yr.), through a cross-sec-
tional pilot study; their results indicate that the added sugar intake 
was associated with an increase of absolute risk of dental caries: 
absolute risk = 6.4%, 95% CI = 1.2%–11.6% (p = 0.02). As you can 
see, both approaches, the 95% CI and the hypothesis testing, are 
strongly related and confirm the null hypothesis rejection: the CI 
range of values around the mean do not include zero and the p value 
is less than 0.05. In this same study, the authors also tested an asso-
ciation between a parent self-reported survey on sugar-sweetened 
food and beverage with tooth decay. Now there was no statistical 
association between the two variables; but, although values are not 
mentioned, we can guess that the 95% IC does includes zero (the 
lowest limit is a negative number), and the p value is > 0.05.37

CONCLUSIONS
Statistical analysis is necessary to obtain valid conclusions from 

data and results collected during clinical Pediatric Dentistry studies. 
When reading an original investigation published paper on Pediatric 
Dentistry, an important part that must of necessity be clearly under-
stood is the results section, where the statistical conclusions should 
be described and explained. So, a clinician interested on making 
critical evaluations of published papers must understand, among 
other aspects proper to the EBD, the basic concepts on descriptive 
and inferential BS, as those mentioned here. Also, other important 
and more advanced issues, like the main statistical methods applied 
in health sciences, will be reviewed in the next part of this series.
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